Lista
publikacji
(List of
publications):
Publikacje w zewnętrznych bazach danych
(publications in external databases)
Książki i wykłady
(books and lectures):
[3] Krzysztof Sacha,
"Time Crystals",
Springer International Publishing, Cham 2020.
|
|
[2] Jacek
Dziarmaga and Krzysztof Sacha,
Quantum
Dark Soliton in Bose-Einstein Condensate in "Advances in Soliton
Research",
Nova Science Publishers, Inc. New York 2006.
[1] Krzysztof
Sacha,
"Kondensat
Bosego-Einsteina",
Instytut Fizyki im. M. Smoluchowskiego, Uniwersytet
Jagiellonski,
Krakow 2004.
Artykuły
naukowe
(research articles):
- [112] Y. Braver, E. Anisimovas, and K. Sacha,
Eight-dimensional topological systems simulated using time-space crystalline structures,
Phys. Rev. B 108, L020303 (2023).
- [111] Ali Emami Kopaei, Krzysztof Sacha, Lingzhen Guo,
Classical Phase Space Crystals in Open Environment,
Phy. Rev. B 107, 214302 (2023).
- [110] Simone Roncallo, Krzysztof Sacha, Lorenzo Maccone,
When does a particle arrive?,
Quantum 7, 968 (2023).
- [109] Y. Braver, C.-h. Fan, G. Žlabys, E. Anisimovas, and K. Sacha,
Two-dimensional Thouless pumping in time-space crystalline structures,
Phys. Rev. B 106, 144301 (2022).
- [108] Ali Emami Kopaei, Xuedong Tian, Krzysztof Giergiel, Krzysztof Sacha,
Topological Molecules and Topological Localization of a Rydberg Electron on a Classical Orbit,
Phys. Rev. A, 106, L031301 (2022).
- [107] Weronika Golletz, Andrzej Czarnecki, Krzysztof Sacha, Arkadiusz Kuroś,
Basis for time crystal phenomena in ultra-cold atoms bouncing on an oscillating mirror,
New J. Phys., 24, 093002 (2022).
- [106] Peter Hannaford, Krzysztof Sacha,
A Decade of Time Crystals: Quo Vadis?,
EPL, 139, 10001 (2022).
- [105] Hossein Taheri, Andrey B. Matsko, Lute Maleki, Krzysztof Sacha,
Time Crystals in Optics,
Optics and Photonics News, 33, 40 (2022).
- [104] Peter Hannaford, Krzysztof Sacha,
Condensed matter physics in big discrete time crystals,
AAPPS Bulletin, 32, 12 (2022).
- [103] Hossein Taheri, Andrey B. Matsko, Tobias Herr, Krzysztof Sacha,
Dissipative Discrete Time Crystals in a Pump-Modulated Kerr Microcavity,
Commun. Phys. 5, 159 (2022).
- [102] Hossein Taheri, Andrey B. Matsko, Lute Maleki, Krzysztof Sacha,
All-optical dissipative discrete time crystals,
Nature Commun. 13, 848 (2022).
Press releases:
Physics World,
Optics & Photonics News,
Phys.org,
Gazeta Wyborcza.
Scientific American.
- [101] Krzysztof Giergiel, Arkadiusz Kuroś, Arkadiusz Kosior, Krzysztof Sacha,
Inseparable time-crystal geometries on the Möbius strip,
Phys. Rev. Lett. 127, 263003 (2021).
- [100] Arkadiusz Kuros, Rick Mukherjee, Florian Mintert, Krzysztof Sacha,
Controlled preparation of phases in two-dimensional time crystals,
Phys. Rev. Research 3, 043203 (2021).
- [99] Jia Wang, Krzysztof Sacha, Peter Hannaford, Bryan J. Dalton,
Discrete time crystals in Bose-Einstein Condensates and symmetry-breaking edge in a simple two-mode theory,
Phys. Rev. A 104, 053327 (2021).
- [98] Andrzej Syrwid, Arkadiusz Kosior, Krzysztof Sacha,
Can a bright soliton model reveal a genuine time crystal for a finite number of
bosons?,
EPL 134, 66001 (2021).
- [97] Giedrius Žlabys, Chu-hui Fan, Egidijus Anisimovas, and Krzysztof Sacha,
Six-dimensional time-space crystalline structures,
Phys. Rev. B 103, L100301 (2021).
- [96] Pawel Matus, Krzysztof Giergiel, and Krzysztof Sacha,
Anderson complexes: Bound states of atoms due to Anderson localization,
Phys. Rev. A 103, 023320 (2021).
- [95] Piotr Staron, Andrzej Syrwid, and Krzysztof Sacha,
Measurement of one-dimensional matter-wave quantum breather,
Phys. Rev. A 102, 063308 (2020).
- [94] A. Kuroś, R. Mukherjee, W. Golletz, F. Sauvage, K. Giergiel, F. Mintert and K. Sacha,
Phase diagram and optimal control for n-tupling discrete time crystal,
New J. Phys. 22, 095001 (2020).
- [93] Krzysztof Giergiel, Tien Tran, Ali Zaheer, Arpana Singh, Andrei Sidorov, Krzysztof Sacha, Peter Hannaford
Creating big time crystals with ultracold atoms,
New J. Phys. 22, 085004 (2020).
- [92] Andrzej Syrwid, Arkadiusz Kosior, and Krzysztof Sacha,
Lack of a genuine time crystal in a chiral soliton model,
Phys. Rev. Research 2, 032038(R) (2020).
- [91] Andrzej Syrwid, Arkadiusz Kosior, and Krzysztof Sacha,
Comment on "Quantum Time Crystals and Interacting Gauge Theories in Atomic Bose-Einstein Condensates",
Phys. Rev. Lett. 124, 178901 (2020).
- [90] Lorenzo Maccone and Krzysztof Sacha,
Quantum measurements of time,
Phys. Rev. Lett. 124, 110402 (2020).
- [89] Peter Hannaford and Krzysztof Sacha,
Time crystals enter the real world of condensed matter,
Physics World, 33 (3), 42 (2020).
- [88] Krzysztof Sacha and Peter Hannaford,
Time Crystal minimizes its energy by performing Sisyphus motion,
PNAS 116, 18755 (2019), commentary.
- [87] K. Amini et al.,
Symphony on Strong Field Approximation,
Rep. Prog. Phys. 82, 116001 (2019).
- [86] Bruno Mera, Krzysztof Sacha, and Yasser Omar,
Topologically protected quantization of work,
Phys. Rev. Lett. 123, 020601 (2019).
Physics Synopis
- [85] Krzysztof Giergiel, Aleksander Kuroś, and Krzysztof Sacha,
Discrete Time Quasi-Crystals,
Phys. Rev. B 99, 220303(R) (2019).
- [84] K. Giergiel, A. Dauphin, M. Lewenstein, J. Zakrzewski, and K. Sacha,
Topological Time Crystals,
New J. Phys. 21, 052003 (2019).
- [83] T. Szoldra, K. Sacha, and A. Kosior,
Determination of Chern numbers with a phase retrieval algorithm,
Phys. Rev. A 99, 043611 (2019).
- [82] P. Matus and K. Sacha,
Fractional Time Crystals,
Phys. Rev. A 99, 033626 (2019).
- [81] A. Syrwid, D. Delande, and K. Sacha,
Emergence of dark soliton signatures in a one-dimensional unpolarized attractive Fermi gas on a ring,
Phys. Rev. A 98, 023616 (2018).
- [80] A. Kosior, A. Syrwid and K. Sacha,
Dynamical quantum phase transitions in systems with broken continuous time and space translational symmetries,
Phys. Rev. A 98, 023612 (2018).
- [79] K. Giergiel, A. Kosior, P. Hannaford and K. Sacha,
Time crystals: analysis of experimental conditions,
Phys. Rev. A 98, 013613 (2018).
- [78] A. Kosior and K. Sacha,
Dynamical quantum phase transitions in discrete time crystals,
Phys. Rev. A 97, 053621 (2018).
- [77] K. Giergiel, A. Miroszewski, and K. Sacha,
Time crystal platform: from quasi-crystal structures in time to systems with exotic interactions,
Phys. Rev. Lett. 120, 140401 (2018).
- [76] Krzysztof Sacha
and Jakub Zakrzewski,
Time crystals: a review,
Video Abstract
Rep.
Prog. Phys. 81, 016401 (2018).
- [75] Andrzej Syrwid, Jakub Zakrzewski, and Krzysztof Sacha,
Time crystal behavior of excited eigenstates,
Phys. Rev. Lett. 119, 250602 (2017).
- [74] Dominique Delande, Luis Morales-Molina and Krzysztof Sacha,
Three-dimensional localized-delocalized Anderson transition in the time domain,
Phys. Rev. Lett. 119, 230404 (2017).
- [73] Marcin
Mierzejewski, Krzysztof Giergiel and Krzysztof Sacha,
Many-body localization caused
by temporal disorder,
Phys.
Rev. B 96, 140201(R) (2017).
- [72] Andrzej Syrwid and Krzysztof
Sacha,
Quantum dark solitons in Bose
gas confined in a hard wall box,
Phys.
Rev. A 96, 043602 (2017).
- [71] Krzysztof
Giergiel and Krzysztof Sacha,
Anderson localization of a
Rydberg electron along a classical orbit,
Phys.
Rev. A 95, 063402 (2017).
- [70] Arkadiusz Kosior and
Krzysztof Sacha,
Localization in random fractal
lattices,
Phys.
Rev. B 95, 104206 (2017).
- [69] Krzysztof Sacha
and Dominique Delande,
Anderson localization in the
time domain,
Phys.
Rev. A 94, 023633 (2016).
- [68] A. Syrwid, M.
Brewczyk, M. Gajda and K. Sacha,
Single shot simulations of
dynamics of quantum dark solitons,
Phys.
Rev. A 94, 023623 (2016).
- [67] Andrzej Syrwid
and Krzysztof Sacha,
Lieb-Liniger model: emergence
of dark solitons in the course of measurements of particle
positions,
Phys.
Rev. A 92, 032110 (2015).
- [66] Krzysztof Sacha,
Anderson localization and Mott
insulator phase in the time domain,
Sci.
Rep. 5, 10787 (2015).
- [65] Krzysztof Sacha,
Modeling spontaneous breaking
of time-translation symmetry,
Phys. Rev. A 91,
033617 (2015).
- [64] Malgorzata Mochol and
Krzysztof Sacha,
Artificial magnetic field
induced by an evanescent wave,
Sci. Rep. 5, 7672
(2015).
- [63] Krzysztof Sacha
and Dominique Delande,
Proper
phase imprinting method for a dark soliton excitation
in a superfluid Fermi mixture,
Phys. Rev. A 90, 021604(R)
(2014).
- [62] Arkadiusz Kosior
and Krzysztof Sacha,
Simulation
of non-Abelian lattice gauge fields with a
single-component gas,
Europhys. Lett. 107,
26006 (2014).
- [61] Dominique Delande and
Krzysztof Sacha,
Many-body
Matter-wave Dark Soliton,
Phys. Rev. Lett. 112, 040402
(2014).
- [60] Arkadiusz Kosior
and Krzysztof Sacha,
Condensate
Phase Microscopy,
Phys. Rev. Lett. 112, 045302
(2014).
- [59] J. Sacha, S.
Barabach, G. Statkiewicz-Barabach, K. Sacha, A. Muller, J.
Piskorski, P. Barthel, and G. Schmidt,
Gender
differences in the interaction between heart rate and
its variability -
how to use it to improve the prognostic power of heart
rate variability
Int. J. Card. 171, E42 (2014).
- [58]
M. Witkowski, R. Gartman, B. Nagórny, M. Piotrowski, M.
Płodzień, K.
Sacha, J. Szczepkowski, J. Zachorowski, M. Zawada, and W.
Gawlik,
Matter-Wave
Interference versus Spontaneous Pattern Formation in
Spinor Bose-Einstein Condensate,
Phys. Rev. A 88,
025602 (2013).
- [57] J. Sacha,
J. Sobon, K. Sacha, S. Barabach,
Heart rate impact on the
reproducibility of heart rate variability analysis,
Int.
J. Card. 168, 4257 (2013).
- [56] J. Sacha, S.
Barabach, G. Stankiewicz-Barabach, K. Sacha, A. Muller, J.
Piskorski, P. Barthel, G. Schmidt,
How to select patients
who will not benefit from ICD therapy by using heart rate and its variability?,
Int.
J. Card. 168, 1655 (2013).
- [55] J. Sacha, S.
Barabach, G. Stankiewicz-Barabach, K. Sacha, A. Muller, J.
Piskorski, P. Barthel, G. Schmidt,
How to strengthen or
weaken the HRV dependence on heart rate - description of the method and its
perspectives,
Int.
J. Card. 168, 1660 (2013).
- [54] D. Delande, K.
Sacha, M. Plodzien, S. K. Avazbaev, and J. Zakrzewski,
Many-body Anderson
localization in one dimensional systems,
New J. Phys. 15, 045021 (2013).
- [53] Arkadiusz Kosior
and Krzysztof Sacha,
Simulation of
frustrated classical XY models with ultracold atoms in
three-dimensional triangular optical lattices
Phys. Rev. A 87, 023602 (2013).
- [52] Marcin Plodzien
and Krzysztof Sacha,
Breakdown of
Anderson localization of interacting quantum bright
solitons in a disorder potential,
Phys. Rev. A 86, 033617 (2012).
- {51] K. Sacha, K.
Targonska, and J. Zakrzewski,
Frustration and time reversal
symmetry breaking for Fermi and Bose-Fermi systems,
Phys.
Rev. A 85, 053613 (2012).
- [50] Malgorzata Mochol,
Marcin Plodzien, and Krzysztof Sacha,
Dark soliton in a disorder
potential,
Phys. Rev. A, 85,
023627 (2012).
- [49] Marcin Fizia and
Krzysztof Sacha,
Inert-states of spin-5 and
spin-6 Bose-Einstein condensates,
J. Phys. A 45, 045103
(2012).
- [48] P. Zin, B. Oles, and K.
Sacha,
Quantum particle number
fluctuations in two-component Bose gas in a double-well
potential,
Phys. Rev. A 84, 033614 (2011)
-
[47] J. Sacha, J. Sobon, K. Sacha,
A. Muller, and G. Schmidt,
Short-term
deceleration capacity reveals higher reproducibility
than spectral
heart rate variability indices during self-monitoring at
home,
Int. J. Cardiol. 152, 271
(2011).
-
[46] M. Plodzien and K. Sacha,
Matter-wave
analog of an optical random laser,
Phys. Rev. A 84, 023624
(2011).
- [45]
Katarzyna Targonska and Krzysztof Sacha
Self-localization of a small
number of Bose particles in a superfluid Fermi system,
Phys. Rev. A 82, 033601
(2010).
- [44]
Jacek Dziarmaga, Piotr Deuar, and Krzysztof Sacha
Comment on
``Quantum
entangled dark solitons formed by ultracold atoms in
optical lattices'',
Phys. Rev. Lett. 105,
018903
(2010).
- [43]
B.
Eckhardt, J. S. Prauzner-Bechcicki, K. Sacha, and J.
Zakrzewski
Phase effects in double
ionization by strong short pulses,
Chemical Physics 370, 168
(2010).
- [42]
K.
Sacha, C. A. Mueller, D. Delande, and J. Zakrzewski
Anderson
Localization of
Solitons,
Phys. Rev. Lett. 103,
210402
(2009).
- [41] A.
Niederberger,
J. Wehr, M. Lewenstein and K. Sacha
Disorder-induced
phase
control in superfluid Fermi-Bose mixtures,
Europhys. Lett. 86, 26004
(2009).
- [40] P. Zin,
J. Chwedenczuk, B.
Oles, K. Sacha and M. Trippenbach,
Critical
fluctuations of
an attractive Bose gas in a double well potential,
Europhys.
Lett. 83, 64007 (2008).
- [39] P. Zin, B. Oles. M.
Trippenbach, and K. Sacha,
Second
order quantum phase transition of a homogeneous Bose gas
with
attractive interactions,
Phys. Rev. A 78, 023620
(2008)
- [38] J. S.
Prauzner-Bechcicki,
K. Sacha, B. Eckhardt,
J. Zakrzewski,
Quantum
model for double ionization of atoms in strong laser
fields,
Phys. Rev. A 78, 013419 (2008).
- [37] B. Oles and K.
Sacha,
N-conserving Bogoliubov vacuum
of a two
component Bose-Einstein
condensate: Density fluctuations close to a phase
separation condition,
J. Phys. A 41, 145005 (2008).
- [36]
A. Niederberger, T.
Schulte, J.
Wehr, M. Lewenstein, L. Sanchez-Palencia, K. Sacha,
Disorder-Induced
Order in Two-Component
Bose-Einstein Condensates,
Phys. Rev. Lett. 100, 030403
(2008).
- [35] B. Eckhardt, J.
S.
Prauzner-Bechcicki, K. Sacha, and J. Zakrzewski
Suppression of
correlated
electron escapes in double ionization in strong laser
fields,
Phys. Rev. A 77, 015402 (2008).
- [34] J. S.
Prauzner-Bechcicki,
K.
Sacha, B. Eckhardt, and J. Zakrzewski
Time resolved
quantum dynamics of double ionization in strong laser
fields,
Phys. Rev. Lett. 98, 203002 (2007).
- [33] B. Oles and K.
Sacha,
Solitons
in
coupled atomic-molecular Bose-Einstein condensates,
J. Phys. B 40, 1103 (2007).
- [32] T. Schulte, S.
Drenkelforth, J.
Kruse, R. Tiemeyer, K. Sacha, J. Zakrzewski, M. Lewenstein,
W. Ertmer,
J. J. Arlt,
Analysis
of
localization phenomena in weakly interacting disordered
lattice gases,
New J. Phys. 8, 230 (2006).
- [31] B. Eckhardt and
K. Sacha,
Classical
threshold
behaviour in a 1+1-dimensional model for double ionization
in strong
fields,
J. Phys. B, 39, 3865 (2006).
- [30] K. Sacha
and
E. Timmermans,
Self-localized
impurities
embedded in a one dimensional Bose-Einstein condensate and
their quantum fluctuations,
Phys. Rev. A 73, 063604
(2006).
- [29] J. Dziarmaga and
K. Sacha,
Images of a
Bose-Einstein condensate: diagonal dynamical Bogoliubov
vacuum,
J. Phys. B, 39, 57 (2006).
- [28]
J. T.
Schulte, S. Drenkelforth, J.
Kruse, W. Ertmer, J.
Arlt, K. Sacha, J.
Zakrzewski,
and M. Lewenstein
Routes
Towards
Anderson-Like Localization of Bose-Einstein Condensates in
Disordered
Optical Lattices,
Phys. Rev. Lett. 95,
170411 (2005) .
- [27] J.
Prauzner-Bechcicki, K. Sacha, B. Eckhardt, and J.
Zakrzewski,
Non-sequential
double ionization of molecules,
Phys. Rev. A 71, 033407 (2005).
- [26] J. Dziarmaga
and K. Sacha,
Bose-Einstein-condensate
heating
by atomic losses,
Phys. Rev. A 68, 043607 (2003).
-
[25] K. Sacha and
B. Eckhardt,
Pathways
to non-sequential multiple ionization in strong laser fields,
J. Phys. B 36, 3923 (2003).
-
[24] J. Dziarmaga,
Z. P. Karkuszewski, and K. Sacha,
Images
of the Dark Soliton in a Depleted Condensate,
J. Phys. B 36, 1217 (2003).
-
[23] J. Dziarmaga
and K. Sacha,
The
Bogoliubov Theory of a BEC in Particle Representation,
Phys. Rev. A 67, 033608 (2003).
-
[22] B. Damski and
K. Sacha,
Changes
of the topologocal charge of vortices,
J. Phys. A 36, 2339 (2003).
-
[21] Z. P.
Karkuszewski, K. Sacha, A. Smerzi,
Mean
field loops versus quantum anti-crossing nets in trapped
Bose-Einstein
condensates,
Europ. Phys. J. D 21, 251 (2002).
-
[20] J.
Dziarmaga, and K. Sacha,
Depletion
of
the dark soliton: The anomalous mode of the Bogoliubov
theory,
Phys. Rev. A 66, 043620 (2002).
-
[19] J. Dziarmaga,
Z. P. Karkuszewski, and K. Sacha,
Quantum
depletion
of an excited condensate,
Phys. Rev. A 66, 043615 (2002).
-
[18] B. Damski,
K. Sacha, and J. Zakrzewski,
Stirring
a
Bose-Einstein condensate,
J. Phys. B 35, 4051 (2002).
-
[17] B. Damski, K.
Sacha, and J. Zakrzewski,
Collective
excitation
of trapped degenerate Fermi gases,
J. Phys. B 35, L153 (2002).
-
[16] Bogdan
Damski, Zbyszek P. Karkuszewski, Krzysztof Sacha,
Jakub
Zakrzewski,
Simple
method
for excitation of a Bose-Einstein condensate,
Phys. Rev. A 65, 013604 (2002).
-
[15] Bruno
Eckhardt and Krzysztof Sacha
Wannier
threshold
law for two electron escape in the presence of an external
electric
field,
Europhysics Letters 56, 651 (2001).
-
[14] Krzysztof
Sacha and Bruno Eckhardt,
Non-sequential
triple
ionization in strong fields,
Phys. Rev. A 64, 053401 (2001).
-
[13] Zbyszek P.
Karkuszewski, Krzysztof Sacha, and Jakub
Zakrzewski,
Method
for
collective
excitation of a Bose-Einstein condensate,
Phys. Rev. A 63, 061601(R) (2001).
-
[12] Krzysztof
Sacha and Bruno Eckhardt,
Pathways
to
double ionization of atoms in strong fields,
Phys. Rev. A 63, 043414 (2001).
-
[11] Krzysztof
Sacha and Jakub Zakrzewski,
Driven
Rydberg atoms reveal quartic level repulsion,
Phys. Rev. Lett. 86, 2269 (2001).
-
[10] Krzysztof
Sacha,
Non-resonant
driving
of an H atom with broken time-reversal symmetry
J. Phys. B 33, 2617 (2000).
-
[9] Krzysztof
Sacha, Jakub Zakrzewski, and Dominique Delande
Breaking
time-reversal
symmetry in chaotic driven Rydberg atoms,
Ann. Phys. (N.Y.) 283, 141 (2000).
-
[8] Krzysztof
Sacha, Jakub Zakrzewski, and Dominique Delande,
Chaotic
Rydberg
atoms with broken time-reversal symmetry,
Phys. Rev. Lett. 83, 2922 (1999).
-
[7] A.
Buchleitner, K. Sacha, D. Delande, and J. Zakrzewski
Quasiclassical
dynamics
of resonantly driven Rydberg states,
Europ. Phys. J. D 5, 145 (1999).
-
[6] Krzysztof
Sacha and Jakub Zakrzewski,
Resonant
dynamics of H atom in elliptically polarized microwave field,
Phys. Rev. A 59, 1707 (1999).
-
[5] Krzysztof
Sacha and Jakub Zakrzewski
H
atom in elliptically polarized microwaves: Semiclassical
versus quantum
resonant dynamics,
Phys. Rev. A 58, 3974 (1998).
-
[4] Krzysztof
Sacha, Jakub Zakrzewski, and D. Delande,
Controlling
Nonspreading
Wavepackets,
Europ. Phys. J. D 1, 231 (1998).
-
[3] Krzysztof
Sacha and Jakub Zakrzewski
H
atom ionization by elliptically polarized microwave fields:
three
dimensional
analysis,
Phys. Rev. A 58, 488 (1998).
-
[2] Krzysztof
Sacha and Jakub Zakrzewski,
H-atom
ionization
by elliptically polarized microwave fields: The overlap
criterion,
Phys. Rev. A 56, 719 (1997).
-
[1] Krzysztof
Sacha and Jakub Zakrzewski,
Resonance
overlap
criterion for H atom ionization by circularly polarized
microwave
fields,
Phys. Rev. A 55, 568 (1997).
Raporty
konferencyjne
(conference
proceedings):
- [15] J. Sacha, S. Barabach,
G. Statkiewicz-Barabach, K. Sacha, A. Muller, P.
Barthel, G. Schmidt,
Heart
rate impact on heart rate variability prognostic value is
different for different indices and outcomes
European Heart Journal, 36, Supplement: 1, 249
(2015).
-
[14] J. Sacha, S. Barabach, G.
Statkiewicz-Barabach, K. Sacha, A. Muller, J.
Piskorski, G. Schmidt,
How
to differentiate patients at risk of cardiac and
non-cardiac death using heart rate and its variability?
European Heart Journal, 33, Supplement: 1, 824
(2012).
-
[13] B. Oles, P. Zin, J. Chwedenczuk, K. Sacha, and
M.
Trippenbach,
Bose-Einstein
condensate in a double well potential in a
vicinity of a critical point,
Laser Phys. 20, 671 (2010).
- [12] K. Sacha, D. Delande, and J. Zakrzewski,
Quantum bright
soliton in a disorder potential,
Acta Physica Polonica A 116, 772 (2009).
- [11] J. S.
Prauzner-Bechcicki, K. Sacha, B. Eckhardt, and J.
Zakrzewski,
Nonsequential
Double Ionization of Atoms in Strong Laser Pulses,
Acta Physica Polonica A 112,
699
(2007).
- [10] J. Dziarmaga
and K. Sacha,
Images
of a Bose-Einstein condensate in position and
momentum space,
Laser Phys. 16, 1710 (2006).
- [9] J. Dziarmaga
and K. Sacha,
N-particle
Bogoliubov vacumm state,
Laser Phys. 16, 1134 (2006).
-
[8] J. T. Schulte, S.
Drenkelforth, J. Kruse, W.
Ertmer, J. Arlt, A. Kantian, L.
Sanchez-Palencia, L.
Santos, A. Sanpera, K.
Sacha,
P. Zoller,
M. Lewenstein and J.
Zakrzewski,
Cold atomic gases
in
optical lattices with disorder
Acta Physica Plonica A 109, 89 (2006).
-
[7] J.
Prauzner-Bechcicki, K. Sacha and B. Eckhardt,
Nonsequential
Double
Ionization of Molecules in Strong Laser Field,
Laser Phys. 15, 497 (2005).
- [6] J. Dziarmaga
and K. Sacha,
Gap
Soliton in Superfluid Fermi Gas at Zero and Finite
Temperature,
Laser Phys. 15, 674 (2005).
-
[5] J.
Dziarmaga, Z. P. Karkuszewski, and K. Sacha,
Dark
Soliton
in a Bose-Einstein Condensate
Laser Phys. 14, 624 (2004).
-
[4] D. Delande,
K. Sacha, and J. Zakrzewski,
Manipulating
the
Shape of Electronic Non-Dispersive Wave-Packet in the
Hydrogen
Atom:
Numerical Testsin Realistic Experimental Conditions,
Acta Physica Polonica B 33, 2097 (2002).
-
[3] Krzysztof
Sacha and Bruno Eckhardt,
Non-sequential
double
ionization of atoms in strong fields, in Super-Intense
Laser-Atom Physics
Proceedings of the NATO Advanced Research Workshop, in
Han-sur-Lesse,
Belgium, 2000,
edited by B. Piraux and K. Rzazewski, (Kluwer Academic
Publishers,
Dordrecht, 2001).
-
[2]
Bruno Eckhardt and Krzysztof Sacha,
Classical
analysis of correlated multiple ionization in strong fields,
Physica Scripta T90, 185 (2001).
-
[1] K. Sacha, R. Gebarowski and
J. Zakrzewski,
Classical thresholds for H atom
ionization by circularly polarized microwave fields,
Nonlinear Phenomena in Complex Systems, 2, 38 (1999).
Inne
(miscellaneous articles):
-
[9]
Krzysztof Sacha,
Kryształy czasowe
Postępy Fizyki, 73 (1), 2 (2022).
-
[8]
Krzysztof Sacha,
Prof. Sacha z UJ: Ścigamy się z Google'em o kryształ czasowy. I mamy przewagę
Gazeta Wyborcza, 21 października 2021.
-
[7]
Krzysztof Sacha,
Kryształy czasowe
Foton,
Lato 2017, Instytut Fizyki, Uniwersytet Jagiellonski.
-
[6]
Krzysztof Sacha,
Atomowy
laser przypadkowy,
ISBN:
978-83-919954-5-7, Krakow 2014, Uniwersytet Jagiellonski.
- [5]
B.
Eckhardt, J.
Prauzner-Bechcicki, K. Sacha, and J. Zakrzewski,
Momentum distributions after
double
ionization,
Chaos 18, 043101 (2008).
(Gallery of Nonlinear Images)
-
[4]
Krzysztof Sacha,
Fizyka aplauzu,
Alma Mater 80, 29 (2006), Uniwersytet Jagiellonski.
-
[3] Krzysztof Sacha,
Kolektywny aplauz
Foton, Jesien 2004, Instytut
Fizyki, Uniwersytet Jagiellonski.
-
[2]
Krzysztof Sacha,
"Dziwny
jest ten świat"
Foton, Jesien 2002, Instytut
Fizyki,
Uniwersytet Jagiellonski.
-
[1]
Krzysztof Sacha, Jakub Zakrzewski,
Quantum Chaos
between
Paris
and Krakow: on the Collaboration between Coulombian
Systems Dynamics
Group of Laboratoire Kastler Brossel (Paris) and Nonlinear
Theory Group
of Atomic Optics Department, Marian Smoluchowski Institute
of Physics
at Jagiellonian University,
The Jagiellonian University News Letter, No. 20, Winter
2002/2003.