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Relatively Random Unitary Operators 

Karol Zyczkowski 

Consider unitary operators (It and (;2 represented by matrices U1 and U2 of 
size N. We shall call operators (;1 and (;2 relatively random, if 

(1) 

Let (;{ = (;J (;1 (;2 denotes the image of the operator (;1 transformed by the 
unitary operation (;2. It is easy to see that f.L = Re[((;{I(;l)]/N, where (AlB) = 
Tr(At B) is the scalar product in the space of operators. In other words, an operator 
(;2 is relatively random with respect to (;1, if (;1 is orthogonal to its image (;{. 
Moreover, the coefficient f.L might be used as a measure of commutativity between 
(;1 and (;2, since the norm of commutator reads 

(2) 

with the norm IIAI12 = (AlA). Relatively random operators do not commute and 
their eigenbasis are sufficiently different. 

The concept of relatively random operators might be used for analysis of 
quantized chaotic systems. It is well known [1,2] that the statistical properties of 
quantum chaotic systems are described by ensembles of random matrices [3]. Level 
spacing distribution which characterizes spectrum of quantum system possessing 
a generalized time-reversal symmetry is described by the Wigner distribution. 
Furthermore, according to the theory of random matrices the distribution of com­
ponents of eigenvectors Yin = I ('lj;lln) 12 , l = 1, ... ,N of a unitary Floquet operator 
F (or a hermitian Hamiltonian) represented in a suitable basis In), n = 1, ... , N is 
given by the Porter-Thomas distribution [4]. We call such a basis relatively random 
with respect to the operator F. 

The distribution of eigenvector components is closely related to the statistics 
of matrix elements [5,6] of an observable represented in the eigenbasis of the Hamil­
tonian or the Floquet operator F. It has been suggested [7] that the statistics of 
matrix elements of an Hermitian operator A is given by the Porter-Thomas distri­
bution, if A is relatively random with respect to F. In this work we conjecture that 
the statistics of components of eigenvectors of a unitary operator F1 describing a 
chaotic quantum system and represented in the eigenbasis of F2 , complies to the 
predictions of random matrices, provided both operators are relatively random. 
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Above mentioned conjecture is supported by a numerical study of the period­
ically kicked top - a quantum system allowing for chaotic motion [8-10]. Dynamical 
variables of the system are three components JI , l = 1,2,3 of the angular momen­
tum operator 1. They obey the commutation relation [Jk, Jil = iEklnJn. Time 
evolution of the system is governed by by the Floquet operator 

A2 
A -iKJ A 

F(K,p) = exp( 2j X)exp(-ipJz ), (3) 

where p and K are the parameters of the model. The eigenvalue j (j + 1) of the 
operator J2 fixes the dimension of the Hilbert space N as N = 2j + 1. It is 
convenient to analyze the system in the eigenbasis of the operator Jz , Ij, m), m = 
-j, ... ,j. 

The perturbation operator V, quadratic in Jx , does not couple states Ij, m) of 
different parity and the matrix F breaks down into a block diagonal form of size j 
and j + 1. Both subspaces are dynamically independent and numerical calculations 
can be performed separately for each parity. It has been reported [8] that for p = 1.4 
and the kicking strength K > 6 the classical motion is chaotic and the statistical 
properties of the Floquet operator P corresponding to the quantum model can be 
described by circular orthogonal ensemble (COE) [3]. 

We are interested in the statistics of eigenvectors of PI = P(KI,PI) rep­
resented a given orthonormal basis. This basis can be defined as the eigenbasis 
of a reference operator P2 = P(K2,P2). In the standard approach to eigenvector 
statistics one uses the basis of the unperturbed system [11,12]' what corresponds 
to putting K2 = 0 and P2 = Pl. On the other hand, if K2 = KI and P2 = PI, both 
operators are equal, the statistics of eigenvectors of Fl in its eigenbasis is singular 
and does not contain any information. We put P2 = PI and consider arbitrary val­
ues of the parameter K2 determining reference operator P2 and study, how large 
values of the "rotation parameter" ~ = k2 - kl produces COE-like eigenvector 
statistics described by Porter-Thomas distribution. 

Eigenvector statistics may be characterized by the mean entropy of eigenvec­
tors (H) [13] 

1 N N 

(H) = - N L L Yin In(Yln). (4) 
1=1 n=l 

This quantity varies from zero for totally localized eigenvectors (one component 
equal to unity and all others to zero) to In(N) for a delocalized eigenvector with 
all components equal to 1/ N. For random matrices representing a member of the 
orthogonal ensemble the mean entropy can be found analytically [14] and expressed 
by means of the Digamma Function W [15] 

N+2 3 
HOE = IJ!(--) -IJ!( -). 

2 2 
(5) 

For convenience we use the scaled entropy 'Y := (H) / HOE which is equal to unity 
for matrices pertaining to the orthogonal ensemble. 
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Figure 1. Dependence of scaled entropy of eigenvectors 'Y on rotation parameter 
D.K for K = 11.0, p = 1.4 and j = 400(0), j = 100(<», j = 25(6). Numerical 
data are joined by solid lines. Corresponding smaller symbols, connected by dashed 
lines, represent values of the coefficient IL. 

We diagonalized numerically unitary matrices FI for values of parameters 
p = 1.4 and K = 11.0 corresponding to classically chaotic motion. Obtained 
eigenvectors where projected onto eigenbasis of F2 = F(K +D.K,p) and the distri­
bution of eigenvectors was described by the scaled entropy 'Y. Figure 1 presents the 
entropy'Y as a function of the "rotation parameter" D.K (in a logarithmic scale) 
for j = 25, 100 and 400. For small values of D.K the reference basis of F2 is so 
close to the eigenbasis of FI that the entropy is negligible. For D.K larger than 
a critical value D.c the eigenbasis of F2 produces eigenvector statistics typical to 
the orthogonal ensemble and 'Y achieves unity. Critical value D.c is proportional to 
1/j: for larger matrix a smaller value of the rotation parameter D.K is sufficient 
to generate a random basis. 

Smaller symbols joined by dashed lines in Figure 1 denote the coefficient IL 
computed according to equation (1). There are no reasons to expect that for a 
given spin length j the values of'Y and IL would be equal. However, the sudden 
growth of the coefficient IL coincides, for any j, with the critical value of the 
rotation parameter D.c , for which the scaled entropy tends to unity. Relatively 
random operator F2 generates thus eigenbasis random with respect to the Floquet 
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operator Fl. Condition (1) might be therefore considered as a simple criterion 
allowing to select a random basis, in which the eigenvector statistics complies with 
the predictions of ensembles of random matrices. 
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