The uncertainty principle <u>does not entirely</u> determine non-locality in quantum mechanics

Dardo Goyeneche

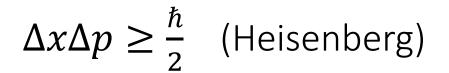
Jagiellonian University (Krakow, Poland)
Politechnika Gdanska (Gdansk, Poland)

In collaboration with R. Ramanathan, P. Mironowitz, P. Horodecki (Gdansk, Poland)

Introduction

- Uncertainty relations
- Quantum steering
- No-signalling principle

Uncertainty relations in quantum mechanics



$$\Delta A \Delta B \ge \left| \frac{1}{2} \langle \{\hat{A}, \hat{B}\} \rangle - \langle \hat{A} \rangle \langle \hat{B} \rangle \right|^2 + \left| \frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right|^2 \qquad \text{(Schrödinger)}$$

Entropic uncertainty relations

$$H^{(a)} + H^{(b)} \ge -2\ln\left[\frac{1}{2}(1+C_B)\right]$$
 (Deutsch)

$$H^{(a)} + H^{(b)} \ge -2 \ln C_B$$
 (Maassen-Uffink)

$$H = -Tr[\rho Log(\rho)]$$

$$C_B = \sup_{(i,j)} |\langle a_i | b_j \rangle|$$

D. Deutsch, Phys. Rev. Lett. 50, 631 (1983) H. Maassen, J. Uffink, Phys. Rev. Lett. 60, 1103 (1988)

Fine grained uncertainty relations

$$\sum_{x=1}^{n} \sum_{a=1}^{m} V(a,x) p(x) p(a|x)_{\sigma} \le C$$



Fine grained uncertainty relations - An example -

$$\frac{1}{2}p(a|Z) + \frac{1}{2}p(b|X) \le \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.8535$$

Fine grained uncertainty relations - An example -

$$\frac{1}{2}p(a|Z) + \frac{1}{2}p(b|X) \le \frac{1}{2} + \frac{1}{2\sqrt{2}} \approx 0.8535$$

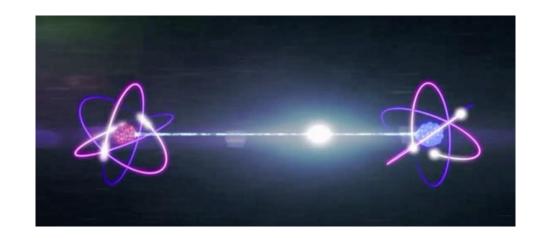
The inequality is not saturated by eigenstates of observables:

$$p(a|Z) = 1$$
 $p(b|X) = 1/2$

Quantum steering

$$\sigma_{a|x}^{(B)} = \sum_{\lambda} q(a|x,\lambda)\rho_{\lambda}$$

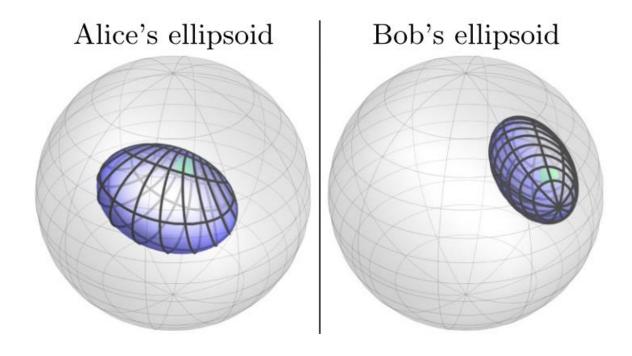
$$q(a|x,\lambda) := p(\lambda)p(a|x,\lambda)$$



If Bob reduction can be written in this form for any possible measurement then the state it allows a Local Hiden State (LHS) decomposition.

If the state cannot be written in such form then Alice can steer the state of Bob.

Quantum steering for two qubits



S. Jevtic, M. Pusey, D. Jennings, T. Rudolph, Quantum Steering Ellipsoids, Phys. Rev. Lett. 113, 020402 (2014)

No-signalling principle

Information cannot travel faster than light...

...and quantum mechanics agrees with that

No-signalling principle

Information cannot travel faster than light...

...and quantum mechanics agrees with that

$$\hat{\sigma}_B = \sum_a p(a|x) \hat{\sigma}^B_{a|x}$$
 (If Bob doesn't have communication with Alice)

e.g.
$$|\phi_{AB}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$$
 $\sigma_B = \frac{1}{2}\mathbb{I}$

Bell inequalities

- Quantum games
- Conjecture
- Counterexample

INPUT x yALICE BOB

OUTPUT a b

INPUT	\mathcal{X}	y	<u>Rules</u> :	
	ALICE	вов	 Any pre-established strategy is allowed There is no communication after inputs received 	
OUTPUT	а	h	3) They win the game if $ab = x \oplus y$ for every a, b, x, y	

INPUT	$\boldsymbol{\mathcal{X}}$	y	<u>Rules</u> :
	ALICE	ВОВ	 Any pre-established strategy is allowed There is no communication after inputs received
OUTPUT	а	b	3) They win the game if $ab = x \oplus y$ for every a, b, x, y

$$\sum \pi_{AB}(x,y) \ V(a,b,x,y) \ P(ab | xy) \le \omega(g)$$

CHSH inequality:

 $% [P(00|00) + P(01|00) + P(10|00) + P(11|01) + P(00|11) + P(01|11) + P(10|11) + P(11|10)] \le 3/4$

ab	$x \oplus y$
00	0
01	0
10	0
11	1

INPUT x yALICE BOB

OUTPUT a b

Rules:

- 1) Any pre-established strategy is allowed
- 2) There is no communication after inputs received
- 3) They win the game if $ab = x \oplus y$ for every a, b, x, y

$$\sum \pi_{AB}(x,y) \ V(a,b,x,y) \ P(ab | xy) \le \omega(g)$$

CHSH inequality:

 $% [P(00|00) + P(01|00) + P(10|00) + P(11|01) + P(00|11) + P(01|11) + P(10|11) + P(11|10)] \le 3/4$

ab	x⊕y
00	0
01	0
10	0
11	1

Probability to win the game:

Classical: 3/4 = 0.75

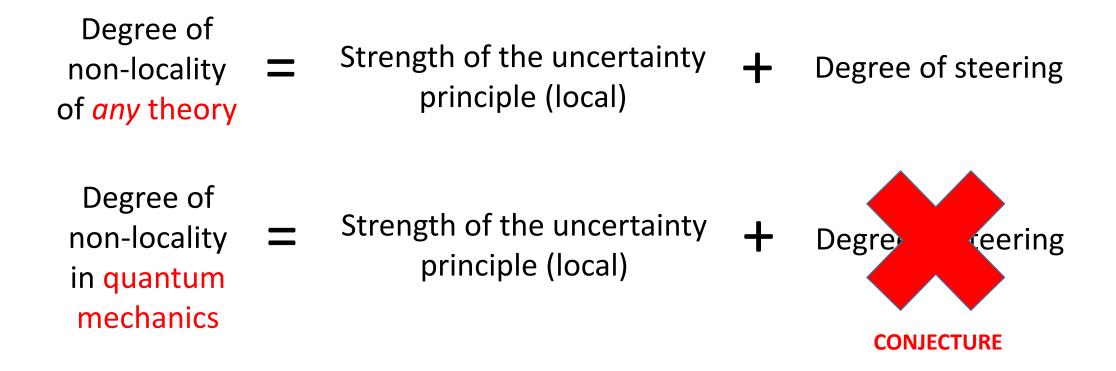
Quantum: $1/2 + 1/4\sqrt{2} \approx 0.85$

No-signalling theory: 1

Strength of non-locality

Degree of non-locality — Strength of the uncertainty of any theory — Strength of the uncertainty principle (local) — Degree of steering

Strength of non-locality



J. Oppenheim and S. Wehner, Science, Vol. 330, No. 6007, 1072 (2010).

$$\sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} \pi_{AB}(x, y) \sum_{\substack{a \in \mathcal{A} \\ b \in \mathcal{B}}} V(a, b|x, y) P(a, b|x, y) \le \omega(g) \qquad P(a, b|x, y) = \text{Tr}\left(\rho M_a^x \otimes M_b^y\right)$$

$$\sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} \pi_{AB}(x, y) \sum_{\substack{a \in \mathcal{A} \\ b \in \mathcal{B}}} V(a, b|x, y) P(a, b|x, y) \le \omega(g) \qquad P(a, b|x, y) = \text{Tr}\left(\rho M_a^x \otimes M_b^y\right)$$

$$\sum_{\substack{x \in \mathcal{X} \\ a \in \mathcal{A}}} \pi_A(x) P(a|x) \sum_{\substack{y \in \mathcal{Y} \\ b \in \mathcal{B}}} \pi_B(y|x) V(a,b|x,y) P(b|y,x,a)$$

$$\sum_{\substack{x \in \mathcal{X} \\ y \in \mathcal{Y}}} \pi_{AB}(x, y) \sum_{\substack{a \in \mathcal{A} \\ b \in \mathcal{B}}} V(a, b|x, y) P(a, b|x, y) \le \omega(g)$$

$$P(a, b|x, y) = \operatorname{Tr}\left(\rho M_a^x \otimes M_b^y\right)$$

$$\sum_{\substack{x \in \mathcal{X} \\ a \in \mathcal{A}}} \pi_A(x) P(a|x) \sum_{\substack{y \in \mathcal{Y} \\ b \in \mathcal{B}}} \pi_B(y|x) V(a,b|x,y) P(b|y,x,a)$$

Let us consider the *free game* scenario, i.e., $\pi_B(y|x) = \pi_B(y)$. Then,

$$\sum_{\substack{y \in \mathcal{Y} \\ b \in \mathcal{B}}} \pi_B(y) V(a, b|x, y) P(b(y)|y, x, a) \hat{\sigma}_{a|x}^B \le \xi_B^{(x, a)}$$

J. Oppenheim and S. Wehner, Science, Vol. 330, No. 6007, 1072 (2010).

Conjecture:

Alice <u>always</u> steers to the maximally certain state

This conjecture was supported by an exhaustive analysis of the -bipartite- Bell inequalities known until Nov. 2010 (e.g. XOR games)

The conjecture also hold for Bell inequalities maximally violated by non-maximally entangled states*

^{*}A. Acin, T. Durt, N. Gisin and J. I. Latorre. Quantum non locality in two three-level systems. Phys. Rev. A 65, 052325 (2002).

Counterexample

$$P(0,0|0,0) + P(1,1|0,0) + P(0,1|0,1) + P(1,0|0,1) + P(0,1|1,0) + P(0,1|1,0) + P(0,1|1,1) \le 3$$

Quantum violation ≈ 3.12

$$\begin{array}{lll} (x,a) = (0,0) & \to & \frac{1}{2}(P(b=0|y=0) + P(b=1|y=1)) \leq \xi_B^{(0,0)} & \text{Only the} \\ (x,a) = (0,1) & \to & \frac{1}{2}(P(b=1|y=0) + P(b=0|y=1)) \leq \xi_B^{(0,1)} & \text{is} \\ (x,a) = (1,0) & \to & \frac{1}{2}(P(b=1|y=0) + P(b=1|y=1)) \leq \xi_B^{(1,0)} & \text{Alice can} \\ (x,a) = (1,1) & \to & P(b=0|y=0) \leq 1, & \text{maxima} \end{array}$$

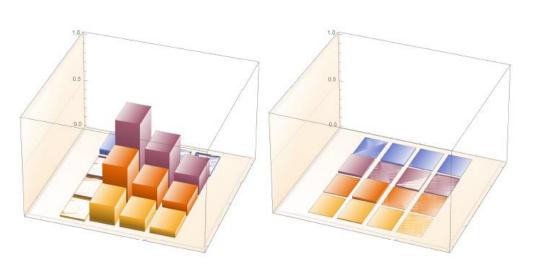
Only the fourth inequality is saturated.
Alice **cannot** steer to the maximally certain state

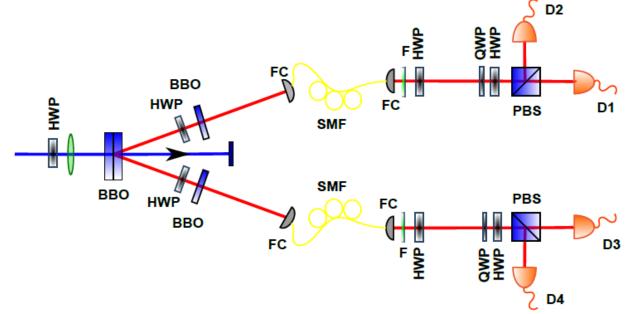
R. Ramanathan, D. Goyeneche, P. Mironowicz, P. Horodecki, The uncertainty principle does not entirely determine the non-locality of quantum theory, arXiv:1506.05100 [quant-ph]

Experimental implementation

-Stockholm, October 2016-

Alice





$$|\Psi\rangle = 0.248707|HH\rangle + 0.476081|HV\rangle + 0.806|VH\rangle - 0.248707|VV\rangle$$

$$F = \text{Tr}(\rho_{\text{theory}}\rho_{\text{exp}}) = 0.993297 \pm 0.000867$$

Fidelities for steered states

$$0.999001 \pm 0.000324$$

$$0.988826 \pm 0.000806$$

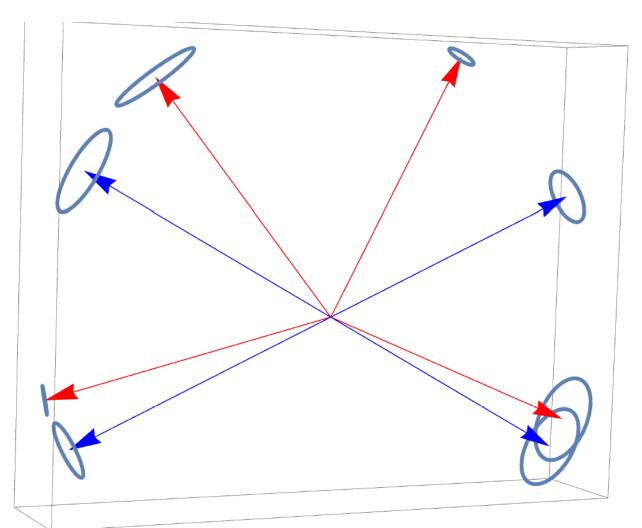
$$0.989912 \pm 0.000883$$

$$0.995704 \pm 0.000383$$

Bob

Experimental implementation

-Stockholm, October 2016-



States that Alice steers Optimal states for Bob

Resume

The uncertainty principle *seems* to determine the strength of non-locality in quantum mechanics (Oppenheim-Wehner, Science, 2010).

We have presented a Bell inequality where both **local uncertainty relations** and **quantum steering** play a fundamental role.

The strength of the uncertainty relations and the degree of quantum steering determine the strength of non-locality in quantum mechanics.

Schrödinger kitty

Thanks for your attention!

R. Ramanathan, D. Goyeneche, P. Mironowicz, P. Horodecki, The uncertainty principle does not entirely determine the non-locality of quantum theory, arXiv:1506.05100 [quant-ph]