Generalized entropies: its connections with Shannon and Kolmogorov-Sinai entropies and an invariant based on this concept

Fryderyk Falniowski

Department of Mathematics, Cracow University of Economics

seminarium "Chaos i informacja kwantowa", Kraków, 4.11.2013

A D F A 目 F A E F A E F A Q Q

Let (X, Σ, μ) be a probability space T: $X \to X$ - (measurable) measure-preserving transformation For a finite partition $\mathcal{P} = \{E_1, ..., E_k\}$ we consider a join partition

 $\mathcal{P}_n := \bigvee_{i=0}^{n-1} T^{-i} \mathcal{P} := \{\bigcap_{i=0}^{n-1} A_i, \text{ where } A_i \in T^{-i} \mathcal{P} \text{ for } i = 0, ..., n-1\}$

where

$$T^{-i}\mathcal{P}=\{T^{-i}E_1,...,T^{-i}E_k\}.$$

Let

$$\eta(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} = 0; \\ -\mathbf{x} \ln \mathbf{x}, & \mathbf{x} \in (0, 1]. \end{cases}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - のへ⊙

Let (X, Σ, μ) be a probability space T: $X \to X$ - (measurable) measure-preserving transformation For a finite partition $\mathcal{P} = \{E_1, ..., E_k\}$ we consider a join partition

$$\mathcal{P}_n := \bigvee_{i=0}^{n-1} T^{-i} \mathcal{P} := \{\bigcap_{i=0}^{n-1} A_i, \text{ where } A_i \in T^{-i} \mathcal{P} \text{ for } i = 0, ..., n-1\}$$

where

$$T^{-i}\mathcal{P}=\{T^{-i}E_1,...,T^{-i}E_k\}.$$

Let

$$\eta(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} = 0; \\ -\mathbf{x} \ln \mathbf{x}, & \mathbf{x} \in (0, 1]. \end{cases}$$

Let (X, Σ, μ) be a probability space T: $X \to X$ - (measurable) measure-preserving transformation For a finite partition $\mathcal{P} = \{E_1, ..., E_k\}$ we consider a join partition

$$\mathcal{P}_n := \bigvee_{i=0}^{n-1} T^{-i} \mathcal{P} := \{\bigcap_{i=0}^{n-1} A_i, \text{ where } A_i \in T^{-i} \mathcal{P} \text{ for } i = 0, ..., n-1\}$$

where

$$T^{-i}\mathcal{P}=\{T^{-i}E_1,...,T^{-i}E_k\}.$$

Let

$$\eta(\mathbf{x}) = \begin{cases} 0, & \mathbf{x} = 0; \\ -\mathbf{x} \ln \mathbf{x}, & \mathbf{x} \in (0, 1]. \end{cases}$$

Dynamical and Kolmogorov-Sinai entropy

Let

$$H(\mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} \eta(\mu(A)).$$

We define the entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical entropy) as

$$h_{\mu}(T, \mathcal{P}) = h(\mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} H(\mathcal{P}_n).$$
 (1)

For a given system (X, Σ, μ, T) we define the Kolmogorov-Sinai entropy of T (with respect to μ) as

$$h_{\mu}(g,T) = \sup_{\mathcal{P}-\text{finite}} h_{\mu}(T,\mathcal{P}).$$
⁽²⁾

Dynamical and Kolmogorov-Sinai entropy

Let

$$H(\mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} \eta(\mu(A)).$$

We define the entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical entropy) as

$$h_{\mu}(T, \mathcal{P}) = h(\mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} H(\mathcal{P}_n).$$
 (1)

For a given system (X, Σ, μ, T) we define the Kolmogorov-Sinai entropy of T (with respect to μ) as

$$h_{\mu}(g,T) = \sup_{\mathcal{P}-\text{finite}} h_{\mu}(T,\mathcal{P}).$$
(2)

Dynamical and Kolmogorov-Sinai entropy

Let

$$\mathrm{H}(\mathcal{P}_{\mathrm{n}}) = \sum_{\mathrm{A}\in\mathcal{P}_{\mathrm{n}}} \eta(\mu(\mathrm{A})).$$

We define the entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical entropy) as

$$h_{\mu}(T, \mathcal{P}) = h(\mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} H(\mathcal{P}_n).$$
 (1)

For a given system (X, Σ, μ, T) we define the Kolmogorov-Sinai entropy of T (with respect to μ) as

$$h_{\mu}(g,T) = \sup_{\mathcal{P}-\text{finite}} h_{\mu}(T,\mathcal{P}).$$
(2)

- ▶ KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
- ▶ how important are properties of $\eta(\mathbf{x}) = -\mathbf{x} \ln \mathbf{x}$ for the entropy in dynamical systems
- many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions

- ▶ KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
- ▶ how important are properties of $\eta(\mathbf{x}) = -\mathbf{x} \ln \mathbf{x}$ for the entropy in dynamical systems
- many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions

- ▶ KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
- ▶ how important are properties of $\eta(\mathbf{x}) = -\mathbf{x} \ln \mathbf{x}$ for the entropy in dynamical systems
- many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions

- ▶ KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
- ▶ how important are properties of $\eta(\mathbf{x}) = -\mathbf{x} \ln \mathbf{x}$ for the entropy in dynamical systems
- many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions

$$\mathcal{G}_0 = \{ g \colon [0,1] \mapsto \mathbb{R}, g - \text{concave}, g(0) = \lim_{x \to 0^+} g(x) = 0 \}.$$

Let $g \in \mathcal{G}_0$. We define the g-entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical g-entropy) as

$$h_{\mu}(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{A \in \mathcal{P}_{n}} g(\mu(A)).$$
(3)

$$h(\mathcal{P}) = \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A).$$

$$\mathcal{G}_0 = \{\mathrm{g} \colon [0,1] \mapsto \mathbb{R}, \ \mathrm{g} - \mathrm{concave}, \ \mathrm{g}(0) = \lim_{\mathrm{x} \to 0^+} \mathrm{g}(\mathrm{x}) = 0\}.$$

Let $g \in \mathcal{G}_0$. We define the g-entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical g-entropy) as

$$h_{\mu}(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{A \in \mathcal{P}_{n}} g(\mu(A)).$$
(3)

$$h(\mathcal{P}) = \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A).$$

$$\mathcal{G}_0 = \{\mathrm{g} \colon [0,1] \mapsto \mathbb{R}, \ \mathrm{g} \ -\operatorname{concave}, \ \mathrm{g}(0) = \lim_{\mathrm{x} \to 0^+} \mathrm{g}(\mathrm{x}) = 0\}.$$

Let $g \in \mathcal{G}_0$. We define the g-entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical g-entropy) as

$$h_{\mu}(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{A \in \mathcal{P}_n} g(\mu(A)).$$
(3)

うしゃ ふゆ きょう きょう うくの

$$h(\mathcal{P}) = \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A).$$

$$\mathcal{G}_0 = \{\mathrm{g} \colon [0,1] \mapsto \mathbb{R}, \ \mathrm{g} \ -\operatorname{concave}, \ \mathrm{g}(0) = \lim_{\mathrm{x} \to 0^+} \mathrm{g}(\mathrm{x}) = 0\}.$$

Let $g \in \mathcal{G}_0$. We define the g-entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical g-entropy) as

$$h_{\mu}(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{A \in \mathcal{P}_{n}} g(\mu(A)).$$
(3)

うしゃ ふゆ きょう きょう うくの

$$h(\mathcal{P}) = \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A).$$

Let ${\mathcal P}$ be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g'_1(0) = g'_2(0) = \infty$,

$$\liminf_{x\to 0^+} \frac{g_1(x)}{g_2(x)} < \infty,$$

and $h(g_2, \mathcal{P}) < \infty$, then

$$\liminf_{x\to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2,\mathcal{P}) \leq h(g_1,\mathcal{P})$$

If additionally $\limsup_{x\to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

$$h(g_1, \mathcal{P}) \leq \limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}).$$

3. If $h(g_2, \mathcal{P}) = \infty$ and $\liminf_{x \to 1} \frac{g_1(x)}{g_2(x)} > 0$, then $h_{2}(g_1, \mathbb{P}) = \infty$.

Let \mathcal{P} be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g'_1(0) = g'_2(0) = \infty$,

$$\liminf_{x\to 0^+} \frac{g_1(x)}{g_2(x)} < \infty,$$

and $h(g_2, \mathcal{P}) < \infty$, then

$$\liminf_{\mathrm{x}\to 0^+} \frac{\mathrm{g}_1(\mathrm{x})}{\mathrm{g}_2(\mathrm{x})} \cdot \mathrm{h}(\mathrm{g}_2,\mathcal{P}) \leq \mathrm{h}(\mathrm{g}_1,\mathcal{P}).$$

If additionally $\limsup_{x\to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

$$h(g_1, \mathcal{P}) \leq \limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}).$$

3. If $h(g_2, \mathcal{P}) = \infty$ and $\liminf_{x \to 1} \frac{g_1(x)}{g_2(x)} > 0$, then $h_2(g_1, \mathcal{P}) = \infty$.

Let \mathcal{P} be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g'_1(0) = g'_2(0) = \infty$,

$$\liminf_{x\to 0^+} \frac{g_1(x)}{g_2(x)} < \infty,$$

and $h(g_2, \mathcal{P}) < \infty$, then

$$\liminf_{x\to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2,\mathcal{P}) \leq h(g_1,\mathcal{P}).$$

If additionally $\limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

$$\mathrm{h}(\mathrm{g}_1,\mathcal{P}) \leq \limsup_{\mathrm{x}
ightarrow 0^+} rac{\mathrm{g}_1(\mathrm{x})}{\mathrm{g}_2(\mathrm{x})} \cdot \mathrm{h}(\mathrm{g}_2,\mathcal{P}).$$

3. If $h(g_2, \mathcal{P}) = \infty$ and $\liminf_{x \to 1} \frac{g_1(x)}{g_2(x)} > 0$, then $h(g_1, \mathcal{P}) = \infty$.

Let \mathcal{P} be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g'_1(0) = g'_2(0) = \infty$,

$$\liminf_{x\to 0^+} \frac{g_1(x)}{g_2(x)} < \infty,$$

and $h(g_2, \mathcal{P}) < \infty$, then

$$\liminf_{x\to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2,\mathcal{P}) \leq h(g_1,\mathcal{P}).$$

If additionally $\limsup_{x\to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

$$\mathrm{h}(\mathrm{g}_1,\mathcal{P}) \leq \limsup_{\mathrm{x} \to 0^+} rac{\mathrm{g}_1(\mathrm{x})}{\mathrm{g}_2(\mathrm{x})} \cdot \mathrm{h}(\mathrm{g}_2,\mathcal{P}).$$

3. If
$$h(g_2, \mathcal{P}) = \infty$$
 and $\liminf_{x \to +} \frac{g_1(x)}{g_2(x)} > 0$, then $h(g_1, \mathcal{P}) = \infty$.

$$\operatorname{Ci}(g) := \liminf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \ \operatorname{Cs}(g) := \limsup_{x \to 0^+} \frac{g(x)}{\eta(x)}.$$

and

$$\mathrm{C}(\mathrm{g}) := \lim_{\mathrm{x} o 0^+} rac{\mathrm{g}(\mathrm{x})}{\eta(\mathrm{x})}.$$

Define

$$\mathcal{G}_0^0 = \{ g \in \mathcal{G}_0 \mid C(g) = 0 \},\$$
e.g. $g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha > 1, g(x) = x \ln(1 - \ln x);$

 $\mathcal{G}_0^{\mathrm{Sh}} = \{ g \in \mathcal{G}_0 \mid 0 < C(g) < \infty \}, \ e.g. \ g(x) = -x \ln \sin x;$

 $\mathcal{G}_0^{\infty} = \{ g \in \mathcal{G}_0 \mid C(g) = \infty \},\$ e.g. $g(x) = \sqrt{x}, \ g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha \in (0, 1).$

$$\operatorname{Ci}(g) := \liminf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \ \operatorname{Cs}(g) := \limsup_{x \to 0^+} \frac{g(x)}{\eta(x)}.$$

and

$$\mathrm{C}(\mathrm{g}) := \lim_{\mathrm{x} o 0^+} rac{\mathrm{g}(\mathrm{x})}{\eta(\mathrm{x})}.$$

Define

 $\mathcal{G}_0^0 = \{ g \in \mathcal{G}_0 \mid C(g) = 0 \},\$ e.g. $g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha > 1, g(x) = x \ln(1 - \ln x);$

 $\mathcal{G}_0^{\mathrm{Sh}} = \left\{ \mathrm{g} \in \mathcal{G}_0 \mid 0 < \mathrm{C}(\mathrm{g}) < \infty \right\}, \; \; \mathrm{e.g.} \; \; \mathrm{g}(\mathrm{x}) = -\mathrm{x} \ln \sin \mathrm{x};$

 $\mathcal{G}_0^{\infty} = \{ g \in \mathcal{G}_0 \mid C(g) = \infty \},\$ e.g. $g(x) = \sqrt{x}, g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha \in (0, 1).$

$$\operatorname{Ci}(g) := \liminf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \quad \operatorname{Cs}(g) := \limsup_{x \to 0^+} \frac{g(x)}{\eta(x)}$$

and

$$\mathrm{C}(\mathrm{g}) := \lim_{\mathrm{x} o 0^+} rac{\mathrm{g}(\mathrm{x})}{\eta(\mathrm{x})}.$$

Define

$$\mathcal{G}_{0}^{0} = \{ g \in \mathcal{G}_{0} \mid C(g) = 0 \},\$$
e.g. $g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha > 1, g(x) = x \ln(1 - \ln x);$

 $\mathcal{G}_0^{Sh} = \{ g \in \mathcal{G}_0 \mid 0 < C(g) < \infty \}, \ e.g. \ g(x) = -x \ln \sin x;$

 $\mathcal{G}_0^{\infty} = \{ g \in \mathcal{G}_0 \mid C(g) = \infty \},\$ e.g. $g(x) = \sqrt{x}, g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha \in (0, 1).$

$$\operatorname{Ci}(g) := \liminf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \quad \operatorname{Cs}(g) := \limsup_{x \to 0^+} \frac{g(x)}{\eta(x)}$$

and

$$\mathrm{C}(\mathrm{g}) := \lim_{\mathrm{x} o 0^+} rac{\mathrm{g}(\mathrm{x})}{\eta(\mathrm{x})}.$$

Define

$$\begin{aligned} \mathcal{G}_{0}^{0} &= \{ g \in \mathcal{G}_{0} \mid C(g) = 0 \} \,, \\ \text{e.g. } g(x) &= \frac{x - x^{\alpha}}{\alpha - 1}, \alpha > 1, \, g(x) = x \ln(1 - \ln x); \\ \mathcal{G}_{0}^{\text{Sh}} &= \{ g \in \mathcal{G}_{0} \mid 0 < C(g) < \infty \} \,, \ \text{e.g. } g(x) = -x \ln \sin x; \\ \mathcal{G}_{0}^{\infty} &= \{ g \in \mathcal{G}_{0} \mid C(g) = \infty \} \,, \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\operatorname{Ci}(g) := \liminf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \quad \operatorname{Cs}(g) := \limsup_{x \to 0^+} \frac{g(x)}{\eta(x)}$$

and

$$\mathrm{C}(\mathrm{g}) := \lim_{\mathrm{x} o 0^+} rac{\mathrm{g}(\mathrm{x})}{\eta(\mathrm{x})}.$$

Define

$$\mathcal{G}_{0}^{0} = \{g \in \mathcal{G}_{0} \mid C(g) = 0\},\$$

e.g. $g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha > 1, g(x) = x \ln(1 - \ln x);\$
$$\mathcal{G}_{0}^{Sh} = \{g \in \mathcal{G}_{0} \mid 0 < C(g) < \infty\}, \text{ e.g. } g(x) = -x \ln \sin x;\$$

$$\mathcal{G}_{0}^{\infty} = \{g \in \mathcal{G}_{0} \mid C(g) = \infty\},\$$

e.g. $g(x) = \sqrt{x}, g(x) = \frac{x - x^{\alpha}}{\alpha - 1}, \alpha \in (0, 1).$

Let \mathcal{P} be a finite partition and $g \in \mathcal{G}_0$. Then

- 1. If $Ci(g) < \infty$, then $h(g, \mathcal{P}) \ge Ci(g) \cdot h(\mathcal{P})$.
- 2. If $Cs(g) < \infty$, then $h(g, \mathcal{P}) \in (Ci(g) \cdot h(\mathcal{P}), Cs(g) \cdot h(\mathcal{P}))$.
- 3. If $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{Sh}$, then $h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P})$.
- 4. If $g \in \mathcal{G}_0^{\infty}$ and $h(\mathcal{P}) > 0$, then $h(g, \mathcal{P}) = \infty$.

Theorem

Let $g \in \mathcal{G}_0^{\infty}$ and T be an aperiodic, surjective automorphism of a Lebesgue space (X, Σ, μ) and let $\gamma \in \mathbb{R}$. Then there exists a partition $\mathcal{P} = \{E, X \setminus E\}$, such that

 $h(g, \mathcal{P}) \geq \gamma.$

Let \mathcal{P} be a finite partition and $g \in \mathcal{G}_0$. Then

- 1. If $Ci(g) < \infty$, then $h(g, \mathcal{P}) \ge Ci(g) \cdot h(\mathcal{P})$.
- 2. If $Cs(g) < \infty$, then $h(g, \mathcal{P}) \in (Ci(g) \cdot h(\mathcal{P}), Cs(g) \cdot h(\mathcal{P}))$.
- 3. If $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{Sh}$, then $h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P})$.
- 4. If $g \in \mathcal{G}_0^{\infty}$ and $h(\mathcal{P}) > 0$, then $h(g, \mathcal{P}) = \infty$.

Theorem

Let $g \in \mathcal{G}_0^{\infty}$ and T be an aperiodic, surjective automorphism of a Lebesgue space (X, Σ, μ) and let $\gamma \in \mathbb{R}$. Then there exists a partition $\mathcal{P} = \{E, X \setminus E\}$, such that

$$h(g, \mathcal{P}) \geq \gamma.$$

Let \mathcal{P} be a finite partition and $g \in \mathcal{G}_0$. Then

- 1. If $Ci(g) < \infty$, then $h(g, \mathcal{P}) \ge Ci(g) \cdot h(\mathcal{P})$.
- 2. If $Cs(g) < \infty$, then $h(g, \mathcal{P}) \in (Ci(g) \cdot h(\mathcal{P}), Cs(g) \cdot h(\mathcal{P}))$.
- 3. If $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{Sh}$, then $h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P})$.
- 4. If $g \in \mathcal{G}_0^{\infty}$ and $h(\mathcal{P}) > 0$, then $h(g, \mathcal{P}) = \infty$.

Theorem

Let $g \in \mathcal{G}_0^{\infty}$ and T be an aperiodic, surjective automorphism of a Lebesgue space (X, Σ, μ) and let $\gamma \in \mathbb{R}$. Then there exists a partition $\mathcal{P} = \{E, X \setminus E\}$, such that

$$h(g, \mathcal{P}) \geq \gamma.$$

Let \mathcal{P} be a finite partition and $g \in \mathcal{G}_0$. Then

- 1. If $Ci(g) < \infty$, then $h(g, \mathcal{P}) \ge Ci(g) \cdot h(\mathcal{P})$.
- 2. If $Cs(g) < \infty$, then $h(g, \mathcal{P}) \in (Ci(g) \cdot h(\mathcal{P}), Cs(g) \cdot h(\mathcal{P}))$.
- 3. If $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{Sh}$, then $h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P})$.
- 4. If $g \in \mathcal{G}_0^{\infty}$ and $h(\mathcal{P}) > 0$, then $h(g, \mathcal{P}) = \infty$.

Theorem

Let $g \in \mathcal{G}_0^{\infty}$ and T be an aperiodic, surjective automorphism of a Lebesgue space (X, Σ, μ) and let $\gamma \in \mathbb{R}$. Then there exists a partition $\mathcal{P} = \{E, X \setminus E\}$, such that

$$h(g, \mathcal{P}) \geq \gamma.$$

Measure-theoretic g-entropy

Following the Kolmogorov proposition we take the supremum over all partitions of dynamical g-entropy of a partition. For a given system (X, Σ, μ, T) we define

$$h_{\mu}(g,T) = \sup_{\mathcal{P}-\text{finite}} h_{\mu}(g,T,\mathcal{P})$$
(4)

うして ふゆ く は く は く む く し く

and call it the measure-theoretic g-entropy of transformation T with respect to measure μ .

Following the Kolmogorov proposition we take the supremum over all partitions of dynamical g-entropy of a partition. For a given system (X, Σ, μ, T) we define

$$h_{\mu}(g, T) = \sup_{\mathcal{P}-\text{finite}} h_{\mu}(g, T, \mathcal{P})$$
(4)

うして ふゆ く は く は く む く し く

and call it the measure-theoretic g-entropy of transformation T with respect to measure μ .

Main theorem

Theorem

Let T be an ergodic automorphism of Lebesgue space (X, Σ, μ) , and $g \in \mathcal{G}_0$ be such that $Cs(g) \in (0, \infty)$ Then

$$h_{\mu}(g,T) = \begin{cases} Cs(g) \cdot h_{\mu}(T), & \text{if } h_{\mu}(T) < \infty, \\ \infty, & \text{otherwise.} \end{cases}$$

If $g \in \mathcal{G}_0^0$, then $h_{\mu}(g, T) = 0$. If $g \in \mathcal{G}_0$ is such that $Cs(g) = \infty$ and T has positive measure-theoretic entropy, then $h_{\mu}(g, T) = \infty$.

うして ふゆ く は く は く む く し く

Fact

Let $g \in \mathcal{G}_0^{\infty}$. If (X, T) is aperiodic and surjective, then $h_{\mu}(g, T) = \infty$.

Main theorem

Theorem

Let T be an ergodic automorphism of Lebesgue space (X, Σ, μ) , and $g \in \mathcal{G}_0$ be such that $Cs(g) \in (0, \infty)$ Then

$$h_{\mu}(g,T) = \begin{cases} Cs(g) \cdot h_{\mu}(T), & \text{if } h_{\mu}(T) < \infty, \\ \infty, & \text{otherwise.} \end{cases}$$

If $g \in \mathcal{G}_0^0$, then $h_{\mu}(g, T) = 0$. If $g \in \mathcal{G}_0$ is such that $Cs(g) = \infty$ and T has positive measure-theoretic entropy, then $h_{\mu}(g, T) = \infty$.

うして ふゆ く は く は く む く し く

Fact

Let $g \in \mathcal{G}_0^{\infty}$. If (X, T) is aperiodic and surjective, then $h_{\mu}(g, T) = \infty$.

Rates of g-entropy convergence

F. Blume "Possible rates of entropy convergence" Ergod. Th.& Dynam. Sys. 17. 45–70 (1997)

Let (X, T) be a measure-preserving system, T -bijective, $(a_n)_{n\in\mathbb{N}}$ a monotone increasing sequence with $\lim_{n\to\infty} a_n = \infty$ and $c \in (0, \infty)$. Let P be a class of partitions of X. Let $g \in \mathcal{G}_0$. We say that (X, T) is of type $(LS(g) \ge c)$ for $((a_n), P)$ if

$$\limsup_{n\to\infty} \frac{H(g,\mathcal{P}_n)}{a_n} \geq c \ \text{ for all } \mathcal{P} \in P$$

and (X,T) is of type (LI(g) \geq c) for ((a_n),P) if

$$\liminf_{n\to\infty} \frac{H(g,\mathcal{P}_n)}{a_n} \geq c \ \text{ for all } \mathcal{P} \in P$$

where

$$H(g, \mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} g(\mu(A)).$$

Rates of g-entropy convergence

F. Blume "Possible rates of entropy convergence" Ergod. Th.& Dynam. Sys. 17. 45–70 (1997)

Let (X, T) be a measure-preserving system, T-bijective, $(a_n)_{n\in\mathbb{N}}$ a monotone increasing sequence with $\lim_{n\to\infty} a_n = \infty$ and $c \in (0, \infty)$. Let P be a class of partitions of X. Let $g \in \mathcal{G}_0$. We say that (X, T) is of type $(LS(g) \ge c)$ for $((a_n), P)$ if

$$\limsup_{n \to \infty} \frac{H(g, \mathcal{P}_n)}{a_n} \geq c \ \text{ for all } \mathcal{P} \in P$$

and (X,T) is of type $(LI(g) \ge c)$ for $((a_n),P)$ if

$$\liminf_{n\to\infty} \frac{H(g,\mathcal{P}_n)}{a_n} \ge c \ \text{ for all } \mathcal{P} \in P$$

where

$$H(g, \mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} g(\mu(A)).$$

Rates of g-entropy convergence

F. Blume "Possible rates of entropy convergence" Ergod. Th.& Dynam. Sys. 17. 45–70 (1997)

Let (X, T) be a measure-preserving system, T –bijective, $(a_n)_{n\in\mathbb{N}}$ a monotone increasing sequence with $\lim_{n\to\infty} a_n = \infty$ and $c \in (0, \infty)$. Let P be a class of partitions of X. Let $g \in \mathcal{G}_0$. We say that (X, T) is of type $(LS(g) \ge c)$ for $((a_n), P)$ if

$$\limsup_{n\to\infty} \frac{H(g,\mathcal{P}_n)}{a_n} \geq c \ \, \text{for all} \ \mathcal{P}\in P$$

and (X,T) is of type (LI(g) $\geq c)$ for ((a_n),P) if

$$\liminf_{n\to\infty} \frac{H(g,\mathcal{P}_n)}{a_n} \geq c \ \, \text{for all} \ \mathcal{P}\in P$$

where

$$H(g, \mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} g(\mu(A)).$$

▶ for $g = \eta$ we obtain types of convergence introduced by Blume

▶ this invariant was used for aperiodic, completely ergodic and rank-one systems (Blume 1997, 1998, 2000, 2011)

A D F A 目 F A E F A E F A Q Q

 types LS(η), LI(η) were also used to distinguish some weakly mixing rank-one systems (Blume 1995)

- ▶ for $g = \eta$ we obtain types of convergence introduced by Blume
- ► this invariant was used for aperiodic, completely ergodic and rank-one systems (Blume 1997, 1998, 2000, 2011)

うしゃ ふゆ きょう きょう うくの

 types LS(η), LI(η) were also used to distinguish some weakly mixing rank-one systems (Blume 1995)

Choice of P and (a_n)

class of partitions

 $P(X) := \{ \mathcal{P} | \mathcal{P} = \{ E, X \setminus E \} \text{ for some } E \in \Sigma \text{ with } 0 < \mu(E) < 1 \}.$

If (X, T) and (Y, S) are isomorphic measure-preserving systems, then (X, T) is of type $(LS(g) \ge c)$ for $((a_n), P(X))$ iff (Y, S) is of type $(LS(g) \ge c)$ for $((a_n), P(Y))$.

• choice of (a_n) if (X, T) has zero entropy and $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{Sh}$, we have

$$\lim_{n\to\infty}\frac{H(g,\mathcal{P}_n)}{n}=0$$

for all finite partitions \mathcal{P} of X. Therefore we consider (a_n) such that $\lim_{n\to\infty} \frac{a_n}{n} = 0$.

Choice of P and (a_n)

class of partitions

 $\mathrm{P}(\mathrm{X}) := \{\mathcal{P} | \mathcal{P} = \{\mathrm{E}, \mathrm{X} \backslash \mathrm{E}\} \text{ for some } \mathrm{E} \in \Sigma \text{ with } 0 < \mu(\mathrm{E}) < 1\}.$

If (X, T) and (Y, S) are isomorphic measure-preserving systems, then (X, T) is of type $(LS(g) \ge c)$ for $((a_n), P(X))$ iff (Y, S) is of type $(LS(g) \ge c)$ for $((a_n), P(Y))$.

• choice of (a_n) if (X, T) has zero entropy and $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{Sh}$, we have

$$\lim_{n\to\infty}\frac{H(g,\mathcal{P}_n)}{n}=0$$

for all finite partitions \mathcal{P} of X. Therefore we consider (a_n) such that $\lim_{n\to\infty} \frac{a_n}{n} = 0$.

Choice of P and (a_n)

class of partitions

 $P(X) := \{ \mathcal{P} | \mathcal{P} = \{ E, X \setminus E \} \text{ for some } E \in \Sigma \text{ with } 0 < \mu(E) < 1 \}.$

If (X, T) and (Y, S) are isomorphic measure-preserving systems, then (X, T) is of type $(LS(g) \ge c)$ for $((a_n), P(X))$ iff (Y, S) is of type $(LS(g) \ge c)$ for $((a_n), P(Y))$.

► choice of (a_n) if (X, T) has zero entropy and $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{Sh}$, we have

$$\lim_{n\to\infty}\frac{H(g,\mathcal{P}_n)}{n}=0$$

for all finite partitions \mathcal{P} of X. Therefore we consider (a_n) such that $\lim_{n\to\infty} \frac{a_n}{n} = 0$.

Let $g \in \mathcal{G}_0$ with C(g) > 0. If (X, T) is an aperiodic measure-preserving system and (a_n) is a positive monotone increasing sequence with $\lim_{n\to\infty} \frac{a_n}{n} = 0$, then (X, T) is not of type $(LI(g) < \infty)$ for $((a_n), P(X))$.

Can we get something new?

Table: Connections between $\eta\text{-entropy}$ types and g-entropy types of convergence

	$\mathbf{g}\in\mathcal{G}_{0}^{0}$	$\mathrm{g}\in\mathcal{G}_0^{\mathrm{Sh}}$	$\mathrm{g}\in\mathcal{G}_0^\infty$
$LS(\eta) \le c$	LS(g) = 0	$LS(g) \leq$	
		$C(g) \cdot c$	$LS(g) \le \infty$,
			$LS(g) = \infty$
$LS(\eta) \ge c$		$LS(g) \ge$	$LS(g) = \infty$
	$\mathrm{LS}(\mathbf{g}) = 0,$	$C(g) \cdot c$	
	$LS(g) \ge 0$		
$LS(\eta) < \infty$	LS(g) = 0	$LS(g) < \infty$	
			$LS(g) \le \infty$,
			$LS(g) = \infty$
$LS(\eta) = \infty$		$LS(g) = \infty$	$LS(g) = \infty$
	$LS(g) < \infty$,		,
	$LS(g) \le \infty$,		
	$LS(g) = \infty$		

$g_0 \in \mathcal{G}_0^0$ – aperiodic systems

► Every subshift over two symbols is of type (LS(g) ≤ 1) for ((φ(2⁻ⁿ))[∞]_{n=1}, P(X)).

• Let $g_0(x) = x \log_2(1 - \log_2 x)$.

Theorem

If (X, T) is aperiodic and measure-preserving and

 $\phi \colon [1,\infty) \mapsto (0,\infty)$ is an increasing function with $\int_{1}^{\infty} \frac{\phi(\mathbf{x})}{\mathbf{x}^2} d\mathbf{x} < \infty$, then for every \mathcal{P} such that $\lim_{n \to \infty} \max\{\mu(A) | A \in \mathcal{P}_n\} = 0$, we have

$$\limsup_{n\to\infty}\frac{H(g_0,\mathcal{P}_n)}{\phi(ng_0(1/n))}=\infty.$$

If $\int_{1}^{\infty} \frac{\phi(\mathbf{x})}{\mathbf{x}^2} d\mathbf{x} = \infty$, then there exists a weakly mixing system (\mathbf{X}, \mathbf{T}) and a meas. set E such that $0 < \mu(\mathbf{E}) < 1$ and $\lim_{n \to \infty} H(\mathbf{g}_0, \mathcal{P}_n) / \phi(n\mathbf{g}_0(1/n)) = 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$g_0 \in \mathcal{G}_0^0$ – aperiodic systems

- ► Every subshift over two symbols is of type (LS(g) ≤ 1) for ((φ(2⁻ⁿ))[∞]_{n=1}, P(X)).
- Let $g_0(x) = x \log_2(1 \log_2 x)$.

Theorem

If (X, T) is aperiodic and measure-preserving and

 $\phi: [1,\infty) \mapsto (0,\infty)$ is an increasing function with $\int_{1}^{\infty} \frac{\phi(\mathbf{x})}{\mathbf{x}^2} d\mathbf{x} < \infty$, then for every \mathcal{P} such that $\lim_{n \to \infty} \max\{\mu(\mathbf{A}) | \mathbf{A} \in \mathcal{P}_n\} = 0$, we have

$$\limsup_{n\to\infty}\frac{H(g_0,\mathcal{P}_n)}{\phi(ng_0(1/n))}=\infty.$$

If $\int_{1}^{\infty} \frac{\phi(\mathbf{x})}{\mathbf{x}^2} d\mathbf{x} = \infty$, then there exists a weakly mixing system (\mathbf{X}, \mathbf{T}) and a meas. set E such that $0 < \mu(\mathbf{E}) < 1$ and $\lim_{n \to \infty} H(\mathbf{g}_0, \mathcal{P}_n) / \phi(n\mathbf{g}_0(1/n)) = 0.$

$g_0 \in \mathcal{G}_0^0$ – aperiodic systems

- ► Every subshift over two symbols is of type (LS(g) ≤ 1) for $((\varphi(2^{-n}))_{n=1}^{\infty}, P(X)).$
- Let $g_0(x) = x \log_2(1 \log_2 x)$.

Theorem

If (X, T) is aperiodic and measure-preserving and $\phi: [1, \infty) \mapsto (0, \infty)$ is an increasing function with $\int_{1}^{\infty} \frac{\phi(x)}{x^2} dx < \infty$, then for every \mathcal{P} such that $\lim_{n \to \infty} \max\{\mu(A) | A \in \mathcal{P}_n\} = 0$, we have

have

$$\limsup_{n\to\infty}\frac{H(g_0,\mathcal{P}_n)}{\phi(ng_0(1/n))}=\infty.$$

If $\int_{1}^{\infty} \frac{\phi(x)}{x^2} dx = \infty$, then there exists a weakly mixing system (X, T) and a meas. set E such that $0 < \mu(E) < 1$ and $\lim_{n \to \infty} H(g_0, \mathcal{P}_n) / \phi(ng_0(1/n)) = 0.$

$g_0 \in \mathcal{G}_0^0$ – completely ergodic systems

▶ If ([0, 1], T) is completely ergodic, then there exists such a sequence (a_n) with $\lim_{n\to\infty} \frac{a_n}{n} = 0$, $\lim_{n\to\infty} a_n = \infty$, that for every $\mathcal{P} \in P([0, 1])$ we have

$$\liminf_{n\to\infty}\frac{H(g_0,\mathcal{P}_n)}{a_n}\geq 1.$$

- ► Under the assumption of the previous theorem there exists (a_n) such that (X, T) is of type LS(η) = ∞ for ((a_n), P([0, 1])).
- for every $\mathcal{P} \in \mathcal{P}([0,1])$

 $\lim_{n\to\infty} H(\eta, \mathcal{P}_n) = \infty.$

 $g_0 \in \mathcal{G}_0^0$ – completely ergodic systems

▶ If ([0, 1], T) is completely ergodic, then there exists such a sequence (a_n) with $\lim_{n\to\infty} \frac{a_n}{n} = 0$, $\lim_{n\to\infty} a_n = \infty$, that for every $\mathcal{P} \in P([0, 1])$ we have

$$\liminf_{n\to\infty}\frac{H(g_0,\mathcal{P}_n)}{a_n}\geq 1.$$

- ► Under the assumption of the previous theorem there exists (a_n) such that (X, T) is of type LS(η) = ∞ for ((a_n), P([0, 1])).
- for every $\mathcal{P} \in \mathcal{P}([0,1])$

 $\lim_{n\to\infty} H(\eta, \mathcal{P}_n) = \infty.$

$g_0 \in \mathcal{G}_0^0$ – completely ergodic systems

▶ If ([0, 1], T) is completely ergodic, then there exists such a sequence (a_n) with $\lim_{n\to\infty} \frac{a_n}{n} = 0$, $\lim_{n\to\infty} a_n = \infty$, that for every $\mathcal{P} \in P([0, 1])$ we have

$$\liminf_{n\to\infty}\frac{H(g_0,\mathcal{P}_n)}{a_n}\geq 1.$$

- ► Under the assumption of the previous theorem there exists (a_n) such that (X, T) is of type LS(η) = ∞ for ((a_n), P([0, 1])).
- for every $\mathcal{P} \in \mathcal{P}([0,1])$

$$\lim_{n\to\infty} H(\eta, \mathcal{P}_n) = \infty.$$

▶ We may construct a class of rank-one weakly mixing systems where we can use type $(LI(g) \ge c)$ for $((a_n), P(X))$ to distinguish systems. Depending on the choice of g we may use other than η -entropy types of convergence to differ rank-one systems.

A D F A 目 F A E F A E F A Q Q

Additional assumptions on g

 $g'(0) = \infty \ (g \in \mathcal{G}_0^0)$

Subderivativity of g

The crucial property of the static g-entropy is the following:

 $H(g, \mathcal{P} \vee \mathcal{Q}) \leq H(g, \mathcal{P}) + H(g, \mathcal{Q} | \mathcal{P})$

It is sufficient that for every $x, y \in [0, 1]$ function g fulfills the following condition

$$g(xy) \le xg(y) + yg(x), \tag{5}$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-lnx),$$

Subderivativity of g

The crucial property of the static g-entropy is the following:

 $\mathrm{H}(\mathrm{g}, \mathcal{P} \vee \mathcal{Q}) \leq \mathrm{H}(\mathrm{g}, \mathcal{P}) + \mathrm{H}(\mathrm{g}, \mathcal{Q} | \mathcal{P})$

It is sufficient that for every $x,y\in[0,1]$ function g fulfills the following condition

$$g(xy) \le xg(y) + yg(x), \tag{5}$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-lnx),$$

Subderivativity of g

The crucial property of the static g-entropy is the following:

 $H(g, \mathcal{P} \lor \mathcal{Q}) \leq H(g, \mathcal{P}) + H(g, \mathcal{Q} | \mathcal{P})$

It is sufficient that for every $x, y \in [0, 1]$ function g fulfills the following condition

$$g(xy) \le xg(y) + yg(x), \tag{5}$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-lnx),$$

Subderivativity of g

The crucial property of the static g-entropy is the following:

$$H(g, \mathcal{P} \lor \mathcal{Q}) \leq H(g, \mathcal{P}) + H(g, \mathcal{Q}|\mathcal{P})$$

It is sufficient that for every $x,y\in[0,1]$ function g fulfills the following condition

$$g(xy) \le xg(y) + yg(x), \tag{5}$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-lnx),$$

Subderivativity of g

The crucial property of the static g-entropy is the following:

$$H(g, \mathcal{P} \lor \mathcal{Q}) \le H(g, \mathcal{P}) + H(g, \mathcal{Q}|\mathcal{P})$$

It is sufficient that for every $x,y\in[0,1]$ function g fulfills the following condition

$$g(xy) \le xg(y) + yg(x), \tag{5}$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-lnx),$$

- for $h(x) = \ln(1 + x)$, we get $g(x) = x \ln(1 \ln x)$,
- for h(x) = x^α, α ∈ (0, 1) we have g(x) = x(− ln x)^α,
 if

$$h(x) := \begin{cases} x, & \text{for } x \in [0, 1) \\ 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), k = 0, 1, \dots \end{cases}$$

 then

$$g(x) = \begin{cases} 0, & \text{for } x = 0, \\ -2^{-k} x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right], \\ -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

- for $h(x) = \ln(1 + x)$, we get $g(x) = x \ln(1 \ln x)$,
- for h(x) = x^α, α ∈ (0, 1) we have g(x) = x(− ln x)^α,
 if

$$h(x) := \begin{cases} x, & \text{for } x \in [0, 1) \\ 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), \\ k = 0, 1, \dots \end{cases}$$

then

$$g(x) = \begin{cases} 0, & \text{for } x = 0, \\ -2^{-k} x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right], \\ -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

• for
$$h(x) = \ln(1 + x)$$
, we get $g(x) = x \ln(1 - \ln x)$,

$$h(x) := \begin{cases} x, & \text{for } x \in [0,1) \\ 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), \\ k = 0, 1, \dots \end{cases}$$

 then

$$g(x) = \begin{cases} 0, & \text{for } x = 0, \\ -2^{-k} x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right], \\ -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

<□ > < @ > < E > < E > E のQ @

- for $h(x) = \ln(1 + x)$, we get $g(x) = x \ln(1 \ln x)$,
- for h(x) = x^α, α ∈ (0, 1) we have g(x) = x(− ln x)^α,
 if

$$h(x) := \begin{cases} x, & \text{for } x \in [0, 1) \\ 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), \\ k = 0, 1, \dots \end{cases}$$

then

$$g(x) = \begin{cases} 0, & \text{for } x = 0, \\ -2^{-k} x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right], \\ -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right]. \end{cases}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ