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Let (X, X, i) be a probability space

T : X — X - (measurable) measure-preserving transformation
For a finite partition P = {E1, ..., Ex} we consider a join
partition

n—1 n—1
Pn = \/ TP .= {m A;, where Ay e TP fori=0,..,n—1}
i=0 i=0
where . _ .
TP = {T7E,,.., T Ey).
Let

(X)_ 0, x = 0;
¥ = —xInx, x € (0,1].
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Let
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We define the entropy of the transformation T with respect to
the partition P (the dynamical entropy) as

h,(T,P) = h(P) = limsup %H(Pn). (1)

n—oo

For a given system (X, X, u, T) we define the Kolmogorov-Sinai
entropy of T (with respect to u) as

hu(ga T) = Sup hM(T) P) (2)
P —finite
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Reasons of the generalization

» KS entropy is an isomorphism invariant; what about
systems with equal entropy (e.g. zero entropy systems)

» how important are properties of n(x) = —xInx for the
entropy in dynamical systems

» many articles were written by physicists, where generalized
entropies were used but there are just few strict results or
definitions
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Dynamical g-entropy

Go={g: [0,1] = R, g — concave, g(0) = lim g(x) = 0}.
x—0t

Let g € Gg. We define the g-entropy of the transformation T

with respect to the partition P (the dynamical g-entropy) as

hu(s, T,P) = (g, P) = Imsup = 3" a(u(A)).  (3)

n—oo AP,

For g = n we obtain

h(P) = lim 1 Z w(A)In p(A).

n—oo n
AePy
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Theorem
Let P be a finite partition.

1. If g € Gy is such that g’(0) < oo, then h(g, P) =
2. If g1, 82 € Gp are such that g} (0) = g5(0) = oo,

lim inf g1(x) <
x—0F gQ(X)

and h(gs,P) < oo, then

L ei(x)
) < )
113369f g2(x) h(g2,P) < h(gi,P)

If additionally lim sup E g < 00, then

x—0t+

g1(x)
,P) <limsu
hlen,P) < limswp &)

-h(g2, P).

3. If h(ge, P) = oo and lim inf gl( ) > 0, then h(g;, P

) ==00.
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The behaviour of the quotient g(x)/n(x) as x converges to zero
appears to be crucial for our considerations. Let

= limin g(x) s(g) := limsu @
) = mit ey ©B =Py

and =)
(G}
(g) x—)()+ X).
Define
G ={gc G |Ce) =0},

e.g. g(x) =22 a > 1, g(x) =xIn(l — Inx);

={g€Gy|0<C(g) <0}, eg g(x)=-—xInsinx;

Go*={g€ Gy | C(g) =0},
g g(x) = VX, g(x)=22r,a€(0,1).
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Corollary

Let P be a finite partition and g € Gg. Then

. If Ci(g) < oo, then h(g, P) > Ci(g) - h(P).

. If Cs(g) < oo, then h(g, P) € (Ci(g) - h(P), Cs(g) - h(P)).
CIfge GUGS", then h(g, P) = C(g) - h(P).

. If g € G§° and h(P) > 0, then h(g, P) = oc.

[

- W N

Theorem
Let g € Gg° and T be an aperiodic, surjective automorphism of
a Lebesgue space (X, X, 1) and let v € R. Then there exists
a partition P = {E, X\E}, such that
h(g, P) = .
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Measure-theoretic g-entropy

Following the Kolmogorov proposition we take the supremum
over all partitions of dynamical g-entropy of a partition. For
a given system (X, X, u, T) we define

hu(g, T)= sup h,(g, T,P) (4)
‘P—finite

and call it the measure-theoretic g-entropy of transformation T
with respect to measure p.
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Main theorem

Theorem
Let T be an ergodic automorphism of Lebesgue space (X, X, ),
and g € Gy be such that Cs(g) € (0,00) Then

_ [ Os(@) (T, ifh(T) < o,
hu(g7T) = { 0, otherwise.

If g € GJ, then h,(g,T) = 0. If g € Gy is such that Cs(g) = o
and T has positive measure-theoretic entropy, then
h#(ga T) = .

Fact
Let g € Gg°. If (X, T) is aperiodic and surjective, then
h,(g, T) = oo.
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Rates of g-entropy convergence

F. Blume “Possible rates of entropy convergence” Ergod. Th.& Dynam. Sys. 17.
45-70 (1997)
Let (X, T) be a measure-preserving system, T —bijective,

(an)nen @ monotone increasing sequence with lim a, = oo and
n—oo

¢ € (0,00). Let P be a class of partitions of X. Let g € Gy.
We say that (X, T) is of type (LS(g) > c) for ((an), P) if

limsupM >c forallPeP
n—00 an
and (X, T) is of type (LI(g) > ¢) for ((ay),P) if

liminfM >c forallPeP

n—o0 an

where

H(g, Pa) = Y g(u(A)).

AePy



» for g = 1 we obtain types of convergence introduced by
Blume



» for g = 1 we obtain types of convergence introduced by
Blume

» this invariant was used for aperiodic, completely ergodic
and rank-one systems (Blume 1997, 1998, 2000, 2011)

» types LS(n), LI(n) were also used to distinguish some
weakly mixing rank-one systems (Blume 1995)
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Choice of P and (ay,)

» class of partitions
P(X) := {P|P = {E,X\E} for some E € ¥ with 0 < p(E) < 1}.

If (X, T) and (Y,S) are isomorphic measure-preserving
systems, then (X, T) is of type (LS(g) > ¢) for ((an), P(X))
iff (Y,S) is of type (LS(g) > ¢) for ((an), P(Y)).

» choice of (ay)
if (X, T) has zero entropy and g € G§ U G5®, we have

n—o0 n

=0

for all finite partitions P of X. Therefore we consider (a,)
such that lim & = 0.
n—oo



Negative result

Theorem

Let g € Gy with C(g) > 0. If (X, T) is an aperiodic
measure-preserving system and (a,) is a positive monotone
increasing sequence with lim % =0, then (X, T) is not of type

(LI(g) < 50) for ((an), P(X)).



Table: Connections between n-entropy types and g-entropy types of

Can we get something new?

convergence
ge Gy g e gt g e gy
LS(n) <¢ LS(g) =0 LS(g) <
Clg) - c LS(g) < oo,
LS(g) = o0
LS(n) > ¢ LS(g) > LS(g) = oo
LS(g) =0, C(g) - c
LS(g) >0
LS(n) < oo LS(g) =0 LS(g) < oo
LS(g) < oo,
LS(g) = o0
S(n) = oo S(g) = o0 S(g) = o0
LS(n) LS(g) < oo, LS(g) LS(g)
LS(g) < oo,

LS(g) = oo
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go € G — aperiodic systems

» Every subshift over two symbols is of type (LS(g) < 1) for
((p(2™))azs , P(X))-
» Let go(x) = xlogy(1 — logs x).

Theorem
If (X, T) is aperiodic and measure-preserving and

oo
¢: [1,00) + (0,00) is an increasing function with [ %dx < 00,
1
then for every P such that lim max{u(A)|A € Py} =0, we
n—oo

have

H n

n—00 ¢(ng0 ( 1/11))

o0
It [ %dx = 00, then there exists a weakly mixing system

1
(X, T) and a meas. set E such that 0 < u(E) < 1 and
Tim (g0, P,)/é{ngo(1/n)) = 0.



g0 € G — completely ergodic systems

» If ([0,1], T) is completely ergodic, then there exists such
a sequence (a,) with 1i_>m &2 =0, lim a, = oo, that for
n—oo

n—o0
every P € P([0,1]) we have

lim inf L(go, Pu)

n—o0 an

> 1.
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g0 € G — completely ergodic systems

» If ([0,1], T) is completely ergodic, then there exists such
a sequence (ay) with lim 22 =0, lim a, = oo, that for
n—oo n—oo
every P € P([0,1]) we have

lim inf L(go, Pu)

n—o0 an

> 1.

» Under the assumption of the previous theorem there exists
(an) such that (X, T) is of type LS(n) = oo for

((an), P([0, 1))
» for every P € P([0,1])

lim H(n, P,) = oc.

n—oo



» We may construct a class of rank-one weakly mixing
systems where we can use type (LI(g) > ¢) for ((ayn), P(X))
to distinguish systems. Depending on the choice of g we
may use other than n-entropy types of convergence to differ
rank-one systems.
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Additional assumptions on g
g'(0) =0 (g € Gp)
Subderivativity of g
The crucial property of the static g-entropy is the following:
H(g, PV Q) < H(g, P) + H(g, QIP)

It is sufficient that for every x,y € [0, 1] function g fulfills the
following condition

g(xy) <xg(y) +ye(x), (5)

The condition is not easy to check. On the other hand if we
want to construct such a function we can define

g(x) := xh(—Inx),

where h : (0,00) — R is a concave, subadditive and increasing
) —

with lim h(x) = oo, lim 20
X—>00 X—>00
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Examples of subderivative functions

» for h(x) =1In (1—|— x), we get g(x) = xIn(1 — Inx),

» for h(x) = x%, a € (0,1) we have g(x) = x(—Inx)?,
> if
)= % for x € [0,1)
T 27k 2k 2 for x €[4k, 4K, k=0,1,...
then
0, for x =0,
g(x) = —27*xlogyx + x(2KT! —2), for x € (2 4T 9 4k] k

—xlog, x, for x € (%



