Next seminars

22 IVGediminas Juzeliunas (Vilnius University, Lithuania)
Spin Squeezing for Ultracold Fermions in Optical Lattices
Location: B-1-46 and MS Teams [ZOA-test], 12:15
Department Seminar
Online: [link]
Show rest

[Abstract, more info]

Conferences

20-22.02.2024 - Workshop on Quantum Simulators of the Future: From Dynamical Gauge Fields to Lattice Gauge Theories | (smr 3922)

An ICTP Meeting This Workshop will gather world-leading groups that design, realize, and characterize a new generation of simulators with ultracold atoms and beyond. It will address novel quantum simulators of statistical gauge fields, dynamical lattices, and lattice gauge theory models (LGT), as well as connections to quantum computing and tensor network methods. https://indico.ictp.it/event/10460

06-08.09.2023 - Time Crystals Conference

More details on conference website.

27.06-2.07.2022 - 6th Workshop on Algebraic Designs, Hadamard Matrices & Quanta

More details on conference website.

05-11.09.2021 - Quantum Optics X

More details on conference website.

Open Data

Current: /2109.08408

Arxiv link

We analyze the finite-size scaling of the average gap-ratio and the entanglement entropy across the many-body localization (MBL) transition in one dimensional Heisenberg spin-chain with quasi-periodic (QP) potential. By using the recently introduced cost-function approach, we compare different scenarios for the transition using exact diagonalization of systems up to 22 lattice sites. Our findings suggest that the MBL transition in the QP Heisenberg chain belongs to the class of Berezinskii-Kosterlitz-Thouless (BKT) transition, the same as in the case of uniformly disordered systems as advocated in recent studies. Moreover, we observe that the critical disorder strength shows a clear sub-linear drift with the system-size as compared to the linear drift seen in random disordered models, suggesting that the finite-size effects in the MBL transition for the QP systems are less severe than that in the random disordered scenario. Moreover, deep in the ergodic regime, we find an unexpected double-peak structure of distribution of on-site magnetizations that can be traced back to the strong correlations present in the QP potential.

[Parent Directory]
entropiesDIR The half-chain Entanglement Entropies($\mathcal{S}$) along with the corresponding energy eigenvaues for different disorder realizations.
r_valuesDIR Average level spacings($r$) for the quasi-periodic xxz model.
spinsDIR Spins ($S_z^i$) values at each site for the QP disordered xxz model.