A low field MRI system for hyperpolarized 3He imaging

Katarzyna Cieślar¹, Tadeusz Pałasz¹, Zbigniew Olejniczak², Katarzyna Suchanek¹, Mateusz Suchanek¹, and Tomasz Dohnalik¹

¹Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
²Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland

Introduction

A low magnetic field Magnetic Resonance Imaging (MRI) system for small animal lung imaging using hyperpolarized 3He gas is presented. The hyperpolarized 3He gas at 1 barb pressure and 30% polarization is obtained by the metastability exchange optical pumping technique. The MRI unit is based on a permanent magnet of open geometry, built from a new generation Nd-B-Fe magnetic material. It produces the magnetic field of 88 mT with homogeneity better than 50 ppm in the 10 cm diameter sphere, after application of passive shimming. The magnetic field gradients of 30 mT/m are generated by a set of biplanar, actively shielded gradient coils. The first 3He images of various biological objects, as well as 3He images of the rat lung in vivo obtained in the described system are shown.

In terms of sensitivity and resolution, the technique is superior to conventional ¹H MRI, and offers great possibilities in early diagnosis of lung diseases.

Principle of optical pumping

The polarized 3He is obtained in the metastability exchange optical pumping process. In the first phase, the helium atoms in the 1^1S_0 ground state are transferred to the $2^3 S_1$ metastable state by the application of weak rf discharge. Then the optical pumping between the hyperfine sublevels of $2^3 S$ and $2^3 P$ states proceeds using the transition at $\lambda=1083$ nm wavelength. As a result the total angular momentum of the metastable atom becomes oriented. The nuclear polarization of the ground state 3He atom builds up during so-called metastability exchange collisions. During the collisions the nuclear orientation remains unaffected while the electronic states of the atoms are exchanged.

Gas production system

Based on the above principle, a dedicated, table-top 3He optical polarizer was built to produce hyperpolarized 3He gas for MRI applications. A homogeneous magnetic field B_0 is produced by a set of six coaxial coils which produces a homogeneous field of the order of 25 G in a sufficiently large volume to accommodate a cell where the optical pumping takes place (OP cell), as well as a storage cell. The optical cell is first evacuated by a system with the turbomolecular pump, and then filled with few mbars of 3He gas, using the gas handling system. A DBR laser diode delivering up to 50 mW of power is used for optical pumping.

After the optical pumping process has been completed, the gas is extracted from OP cell using a non-magnetic peristaltic compressor and accumulated in the storage cell. When the required amount of 3He is obtained, it is mixed with neutral gas (N_2 or 3He), extracted into the syringe and delivered to the MRI scanner.

MRI system

A low field MRI system for imaging small animal lungs using hyperpolarized 3He consists of the permanent magnet producing the static field B_0, a set of biplanar, actively shielded gradient coils, and the rf coil. All experiments are controlled by a commercial MR Research Systems console supplemented by a home-built frequency converter, which makes it possible to perform the experiments on either 3He or 1H frequencies.

References