GEOMETRY OF QUANTUM ENTANGLEMENT

some open problems

Karol Życzkowski

Institute of Physics, Jagiellonian University, Cracow, Poland
and
Center for Theoretical Physics, Polish Academy of Sciences

Oberwolfach, December 6, 2009
Pure states in a finite dimensional Hilbert space \mathcal{H}_N

Qubit = quantum bit; $N = 2$

$$|\psi\rangle = \cos \frac{\vartheta}{2} |1\rangle + e^{i\phi} \sin \frac{\vartheta}{2} |0\rangle$$

Bloch sphere of $N = 2$ pure states

Space of pure states for an arbitrary N: a complex projective space $\mathbb{C}P^{N-1}$ of $2N - 2$ real dimensions.
Mixed quantum states

Set \mathcal{M}_N of all mixed states of size N

$$\mathcal{M}_N := \{ \rho : \mathcal{H}_N \rightarrow \mathcal{H}_N; \rho = \rho^\dagger, \rho \geq 0, \text{Tr}\rho = 1 \}$$

example: $\mathcal{M}_2 = B_3 \subset \mathbb{R}^3$ - Bloch ball with all pure states at the boundary

The set \mathcal{M}_N is compact and convex:

$$\rho = \sum_i a_i |\psi_i\rangle \langle \psi_i|$$
where $a_i \geq 0$ and $\sum_i a_i = 1$.

It has $N^2 - 1$ real dimensions, $\mathcal{M}_N \subset \mathbb{R}^{N^2 - 1}$.

How the set of all $N = 3$ mixed states looks like?

An 8 dimensional convex set with only 4 dimensional subset of pure (extremal) states, which belong to its 7 dim boundary
Euclidean Geometry of the set $\mathcal{M}^{(N)}$ of quantum states with respect to *Hilbert–Schmidt* distance:

$$D_{\text{HS}}(\rho, \sigma) := \sqrt{\text{Tr}(\rho - \sigma)^2}$$

Set $\mathcal{M}^{(N)}$ can be inscribed into an outsphere centred at the maximally mixed state $\rho_* = 1/N$ of radius $R_N = \sqrt{(N-1)/N}$. The insphere inscribed inside $\mathcal{M}^{(N)}$ has radius $r_N = 1/\sqrt{(N-1)N}$, so $R_2 = r_2$.

Hilbert–Schmidt distance leads to HS (flat) measure. For $N = 2$ (*one–qubit states*) we receive: the volume of the Bloch ball $V(2) = \pi\sqrt{2}/3$ and the area of the Bloch sphere of radius $R_2 = 1/\sqrt{2}$ reads $A(2) = 2\pi$.

KŻ (IF UJ/CFT PAN) Geometry of Quantum Entanglement December 6, 2009 11 / 22
Volume and area of the set $\mathcal{M}^{(N)}$ of mixed states

with respect to the HS measure

Volume in $N^2 - 1$ dimensions

$$V(N) = \text{vol}(\mathcal{M}^{(N)}) = \sqrt{N(2\pi)^{N(N-1)/2}} \frac{\Gamma(1) \cdots \Gamma(N)}{\Gamma(N^2)} , \quad (1)$$

(Hyper) Area of this $N^2 - 2$ dimensional boundary

$$A(N) = \text{vol}(\partial \mathcal{M}^{(N)}) = \sqrt{N - 1}(2\pi)^{N(N-1)/2} \frac{\Gamma(1) \cdots \Gamma(N + 1)}{\Gamma(N)\Gamma(N^2 - 1)} . \quad (2)$$

Area/volume ratio $\gamma = Ar/V$

$$\gamma(\mathcal{M}^{(N)}) = r_N \frac{A}{V} = \frac{1}{\sqrt{(N - 1)N}} \sqrt{N(N - 1)(N^2 - 1)} = N^2 - 1 = d. \quad (3)$$

Convex Body = a convex, compact set in \mathbb{R}^d

A body X has a **constant height** if

a) every boundary point of X is contained in a face tangent to the inscribed ball of radius r \iff

b) area/volume ratio is fixed, $\gamma(X) := rA/V = d = \text{dim}(X)$.

Archimedean formula for the volume of a d-cone:

Volume $V = Ah/d$, where A stands for the area of its base and h for its height \implies

A body of a constant height can be decomposed into cones of the same height!

Set of mixed quantum states has a constant height
Composed systems & entangled states

bi-partite systems: \(\mathcal{H} = \mathcal{H}_A \otimes \mathcal{H}_B \)

- **separable pure states:** \(|\psi\rangle = |\phi_A\rangle \otimes |\phi_B\rangle \)
- **entangled pure states:** all states **not** of the above product form.

Mixed states

- **separable mixed states:** \(\rho_{\text{sep}} = \sum_j p_j \rho^A_j \otimes \rho^B_j \)
- **entangled mixed states:** all states **not** of the above product form.
Two-qubit mixed states

The maximal ball inscribed into $\mathcal{M}^{(4)}$ of radius $r_4 = 1/\sqrt{12}$ centred at $\rho_* = 1/4$ is separable!

ρ^*

thetrahedron of eigenvalues

K.Ż, P. Horodecki, M. Lewenstein, A. Sanpera, 1998
Two-qubit mixed states

Degree of entanglement: a distance to the closest separable state

K. Ž, M. Kuš, 2001
Positive partial transpose criterion: Two–qubit mixed states

The set of separable states of two–qubit system arises as an intersection of $\mathcal{M}^{(4)}$ and its mirror image with respect to partial transposition $T_A(\mathcal{M}^{(4)})$.

The set of two–qubit separable states has a constant height!

S. Szarek, I. Bengtsson, K.Ż, 2006
In 2005 P. Slater studied numerically the ratio Ω between the probabilities of finding a PPT state in the interior of $\mathcal{M}(N^2)$ and at its boundary,

$$\Omega \equiv \frac{p_V}{p_A} := \frac{V_{\text{PPT}}}{V_{\text{tot}}} = \frac{V_{\text{PPT}} A_{\text{tot}}}{V_{\text{tot}} A_{\text{PPT}}}.$$ \hspace{1cm} (4)

Area of the PPT part of the boundary of the set of mixed states $A_P = A_{\text{PPT}}/2$ due to reflection symmetry. Since the set of PPT states has the same constant height r as the set of all states then

$$rA_{\text{tot}}/V_{\text{tot}} = rA_{\text{PPT}}/V_{\text{PPT}}.$$

Hence we find

$$\Omega = \frac{V_{\text{PPT}} A_{\text{tot}}}{V_{\text{tot}} A_{\text{PPT}}/2} = 2.$$ \hspace{1cm} (5)

This statement concerns the PPT property for any $N \times N$ system, and for two–qubit system it concerns also the relative probability of finding a separable state.

S. Szarek, I. Bengtsson, K.Ż, 2006
Open problems - mixed states: volumes

Find if there is any symmetry governing the PPT reflection of the set of mixed states, which would allow us to established another relation between between V_{PPT} and V_{tot}.

Compute the exact value of the ratio $V_{\text{PPT}}/V_{\text{tot}}$ which would give the exact value of the volume Hilbert–Schmidt volume of the set of two-qubit separable states.

Find a similar relation for two quNit systems which yields the relative volume of the PPT states - check how it depends on N.
Open problem - visualisation

What is a 'best possible' 3-dimensional model of the 8-dimensional set of mixed states of \(N = 3 \)?

Is it the convex hull of a tennis ball?
Two qubits: foliation of complex projective space $\mathbb{C}P^3$ into leaves of equal FS distance to the set of product states $\mathbb{C}P^1 \times \mathbb{C}P^1$.

A generic 5–D leaf of an intermediate entanglement $\omega = C/2 > 0$ has the local structure of $U(2)/[U(1)]^2 \times \mathbb{R}P^3$.
Open problems - pure states: topology

Pure states of bipartite system

Two qubits: The orbit of states locally equivalent to the maximally entangled Bell state has 3 dimensions and the topology of real projective space $\mathbb{R}P^3$.

Two quNits: The orbit of states locally equivalent to maximally entangled state has $N^2 - 1$ dimensions and the topology of a coset space $U(N)/U(1)$.

Pure states of multi-partite system

- three qubits - pure states: What is the topology of the set of pure states locally equivalent to
 a) GHZ state, $|\psi_{\text{GHZ}}\rangle := \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$,
 and
 b) W–state, $|\psi_{\text{W}}\rangle := \frac{1}{\sqrt{3}}(|001\rangle + |010\rangle + |100\rangle)$?

Similar questions for – four qubits - pure states ...