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a b s t r a c t

We analyze mathematical properties of apportionment functions in the context of allocating seats in the
European Parliament. Some exemplary families of such functions are specified and the corresponding
allocations of seats among the Member States of the European Union are presented. We show that the
constitutional constraints for the apportionment are so strong that the admissible functions lead to rather
similar solutions.
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1. Introduction

One of the major mathematical approaches to the problem
of allocating seats in the European Parliament can be described
by the following general scheme. First, one has to choose a con-
crete characterization of the size of a given Member State i by
a number pi (for example, equal to the total number of its in-
habitants, citizens, or voters1) we call here population, and pre-
cisely define by which means these data should be collected and
how often they should be updated. Then, one needs to trans-
form these numbers by an allocation (or apportionment) function
A belonging to a given family indexed (usually monotonically and
continuously) by some parameter d, whose range of variability
is determined by the requirement that the function fulfills con-
straints imposed by the treaties: is non-decreasing and degressively
proportional.

Additionally, the apportionment function satisfies certain
boundary conditions, A(p) = m and A(P) = M , where the pop-
ulation of the smallest and the largest state equals, respectively, p
and P , and the smallest and the largest number of seats are prede-
termined as, respectively, m and M . (In the case of the European
Parliament these quantities are explicitly bounded by the treaty,
m ≥ Mmin = 6 and M ≤ Mmax = 96.) To obtain integer num-
bers of seats in the Parliament one has to round the values of the

∗ Corresponding author.
E-mail address:wojciech.slomczynski@im.uj.edu.pl (W. Słomczyński).

1 Of course, other more exotic choices are also possible. According to the original
text of the Constitution of the United States (Article I, Section 2) ‘Representatives
(. . . ) shall be apportioned among the several States which may be included within
this Union, according to their respective Numbers, which shall be determined by
adding to the whole Number of free Persons, (. . . ) three fifths of all other Persons’.
The words ‘other Persons’ here mean the slaves. The rule was the result of the so
called ‘Three-Fifths compromise’ between Southern and Northern states during the
Constitutional Convention in 1787.

allocation function, e.g., using one of three standard roundingmeth-
ods (upward, downward or to the nearest integer). Finally, one has
to choose the parameter d in such a way that the sum of the seat
numbers of all Member States equals the given Parliament size S,
solving (if possible) in d the equation

N
i=1

[Ad (pi)] = S, (1)

where N stands for the number of Member States, pi for the
population of the i-th state (i = 1, . . . ,N), and [·] denotes the
rounded number. Though usually there is a whole interval of
parameters satisfying this requirement, nonetheless, in a generic
case, the distribution of seats established in this way is unique.
Thus, this technique bears a resemblance to divisor methods in
the proportional apportionment problem applied first by Thomas
Jefferson in 1792 (Balinski and Young, 1978; Toplak, 2009).

The crucial role in this apportionment scheme plays the
notion of degressive proportionality. The principle of degressive
proportionality enshrined in the Lisbon Treaty was probably
borrowed from the discussions on the taxation rules, where the
term has appeared already in the nineteenth century, when many
countries introduced income tax for the first time in their history
(Young, 1994). It was already included in the debate on the
apportionment in the Parliament in late 1980s, but at first, it was
a rather vague idea that gradually evolved into a formal legal (and
mathematical) term in the report Lamassoure and Severin (2007)
adopted by the European Parliament. There were also suggestions
to apply this general principle to other parliamentary or quasi-
parliamentary bodies like the projected Parliamentary Assembly
of the United Nations (Bummel, 2010).

In fact the entire problem of apportionment of seats in the
Parliament is mathematically similar (not counting rounding) to
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the taxation problem, what is illustrated in the table below.

Apportionment Taxation
Member states Tax payers
Population Income
Seats Post-tax income
Allocation function Post-tax income function
Parliament size Total disposable income
Seats monotonicity Income order

preservation
Degressivity of seats
distribution

Progressivity of tax
distribution

Subadditivity of seats
distribution

Merging-proofness

In consequence, the similar mathematical tools can be used
to solve both of them; see for instance Young (1987), Thomson
(2003), Kaminski (2006), Hougaard (2009), Ju andMoreno-Ternero
(2011) and Moreno-Ternero (2011), where the authors use the
above presented scheme to consider possible parametric solutions
of the taxation problem or the dual profit-sharing problem. Of
course, the analogy has clear limitations since income and post-tax
income are calculated in the same units, whereas population and
seats are not. Moreover, money is (at least theoretically) infinitely
divisible, while seats are indivisible.

Although quite a novelty in politics, nevertheless, the concept
of degressive proportionality is not entirely new in mathematics.
It was already analyzed in late 1940s under the name of ‘quasi-
homogeneity’ by Rosenbaum (1950, Definition 1.4.1), see also
Kuczma (2009, p. 480), and since then studied also under the name
of ‘subhomogeneity’, see e.g. Burai and Száz (2005). Moreover,
an increasing function such that its inverse is degressively
proportional (and so it is an allocation function) is called ‘star-
shaped’ (with respect to the origin) in the mathematical literature.
In otherwords, the function is degressively proportional if and only
if the lines joining points lying below its graph with the origin
do not cross the graph. Star-shaped functions were introduced in
Bruckner and Ostrow (1962), and since then have been studied in
many areas of pure and applied mathematics, see e.g. Ding and
Wolfstetter (2011) and Dahm (2010). Thus, the results concerning
this class of functions can be applied, mutatis mutandis, to
degressively proportional functions.

Note that in the original definition of the degressive propor-
tionality formulated in Lamassoure and Severin (2007) it was pos-
tulated that this property holds for the number of seats after
rounding the values of the allocation function to whole numbers.
However, one can show that there exist such distributions of
population that there is no solution of the apportionment prob-
lem satisfying so understood degressive proportionality (Ramírez-
González, 2010; Grimmett et al., 2011). In particular, such
difficulty arises in situations where there are a number of Mem-
ber States having similar populations. Consequently, in Grimmett
et al. (2011) it was recommended to weaken this condition and
to amend the definition of degressive proportionality assuming
that ‘the ratio between the population and the number of seats of
each Member State before rounding to whole numbers must vary
in relation to their respective populations in such a way that each
Member from a more populous Member State represents more
citizens than each Member from a less populous Member State’.
This proposal has been recently approved by The Constitutional
Affairs’ Committee of the European Parliament (AFCO). For the de-
tailed mathematical analysis of the original definition of the de-
gressive proportionality, see Łyko et al. (2010), Cegiełka (2011),
Florek (2012), Ramírez-González et al. (2012) and Serafini (2012).

In this paper we describe several exemplary families of
allocation functions and discuss their fundamental properties.

Mathematical technicalities collected in Sections 3–5 can be
skipped by more practically oriented readers, who may proceed
to Section 6, in which general results are applied to the European
Parliament.

2. Allocation functions—definition and examples

Before selecting an allocation function A one needs to specify
the boundary conditions m and M , which denote the number
of seats for the smallest and the largest member state, with
population p and P , respectively. In the case of the European
Parliament, the treaty sets the following bounds only:m ≥ Mmin =

6 andM ≤ Mmax = 96.

Definition 1. Let 0 < p < P, 0 < m < M , and pM < Pm. We call
A : [p, P] → [m,M] a (degressive) allocation function, if:

1. (monotonicity) A is non-decreasing;
2. (degressive proportionality) A is degressively proportional,

i.e. the function t → A (t) /t is non-increasing.

We shall also consider the situation where P = M = +∞,
assuming then that A : [p, +∞) → [m, +∞). For the sake of
brevity we shall omit the word ‘degressive’ and instead of saying
that ‘A is a degressive allocation function’ we shall simply say that
‘A is an allocation function’.

Below, we consider several families of allocation functions
fulfilling additionally boundary conditions: A (p) = m and A (P) =

M . Each of themdepends on one (free) parameter (d) with its range
of variability determined by other assumptions imposed on A. In
the case of the allocation of seats in the Parliament, the final value
of the parameter d is set by the constraint (1) that the total size of
the House is fixed.

Note also that the actual value of the constant d changes from
one allocation function to another.

1. base + prop functions—the ‘floor’ version:

A1a(t) := max [m, (t − P) /d + M] , (2)

where P
M ≤ d ≤

P−p
M−m ; then the function is convex; and the

‘cup’ version:

A1b (t) := min [m + (t − p) /d, M] , (3)

where p
m ≤ d ≤

P−p
M−m ; in this case the function is concave. Note

that not only the choice of the parameter d, but also the choice
of one of two forms of the base + prop function (A1a or A1b)
depends on other constraints (pi, i = 1, . . . ,N , and S) in (1),
see also Section 4. Observe further that the base + prop + floor
and base + prop + cup functions are in a sense extremal
allocation functions satisfying boundary conditions: A (p) = m
and A (P) = M , since it is clear that every such function must
fulfill the inequalities:

max [m, (M/P) t] ≤ A(t) ≤ min [(m/p) t, M] (4)

for t ∈ [p, P], and thus it is bounded from below by a
base + prop + floor function (d := P/M), and from above by
a base + prop + cup function (d := p/m).

2. piecewise linear functions:

A2a(t) := max [m + (t − p) /d, (M/P) t] , (5)

where P−p
M−m ≤ d; the function is convex; or

A2b(t) := min [(m/p) t, (t − P) /d + M] , (6)

where P−p
M−m ≤ d; the function is concave. Again, the choice of

one of two forms of the piecewise linear function (A2a or A2b)
depends on constraints in (1).
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1. quadratic (parabolic) functions:

A3 (t) :=


t − p
P − p

M
P

+
P − t
P − p

m
p


t − d (t − p) (P − t) . (7)

Depending on the system constraints M,m, P, p and the
parameter d determined by the total size S of the House, the
function is either convex or concave. In particular, if

0 ≤ d − Θ ≤
min (M − m,m − Mp/P)

(P − p)2
, (8)

with Θ :=
m/p−M/P

P−p , the function (7) is convex. In the case

0 ≥ d − Θ ≥ −
min (M − m,mP/p − M)

(P − p)2
(9)

the parabolic allocation function is concave.

4. base + power functions:

A4(t) := M
td − pd

Pd − pd
+ m

Pd
− td

Pd − pd
, (10)

where either 0 < d ≤ 1 and (M/m − 1) d ≤ (P/p)d − 1, or
1 < d and (1 − m/M) d ≤ 1 − (p/P)d. In the first case the
function is concave, in the second convex. In the limiting case
(d → 0) we get a logarithmic function:

Al(t) :=
ln


Pm/pM


+ (M − m) ln t

ln (P/p)
, (11)

which is an allocation function, ifM/m − 1 ≤ ln (P/p).

5. homographic functions:

A5 (t) :=
M (t/M − d) (t − p) + m (t/m − d) (P − t)

(P/M − d) (t − p) + (p/m − d) (P − t)
, (12)

where either d ≤ p/M or d ≥ P/m. In the first case the function
is concave, in the second convex. In the limiting case (d → ±∞)
we get a linear function.

All five families discussed above share a common element: the
linear (affine, d

dt Alin (t) ≡ const ≥ 0) function Alin : [p, P] →

[m,M] given by the formula

Alin(t) := M
t − p
P − p

+ m
P − t
P − p

. (13)

On the other hand, if d
dt

A(t)
t ≡ const ≤ 0, then A must be a

quadratic function given by (7) with d = 0, i.e.,

Aq (t) :=


t − p
P − p

M
P

+
P − t
P − p

m
p


t. (14)

Some of the above solutions were already discussed in the
literature, also in the context of the European Parliament.

The base + prop class which seems to lead to the simplest of
all these methods was first analyzed in Pukelsheim (2007, 2010),
see also Martínez-Aroza and Ramírez-González (2008, 2010),
and became the basis for the recent proposal, called ‘Cambridge
Compromise’, elaborated in January 2011, and discussed later by
the Committee on Constitutional Affairs (AFCO) of the European
Parliament (Grimmett, 2012; Grimmett et al., 2011). Here we
present this method in the ‘spline’ form, see Martínez-Aroza
and Ramírez-González (2008). Likewise, one of the methods of
apportionment of seats in the projected Parliamentary Assembly
of the United Nations is based on this model (Bummel, 2010, p.
25). Note that, in fact, the composition of the Electoral College
that formally elects the President and Vice President of the United
States of America also reflects the base + prop scheme, where

each state is allocated as many electors as it has Senators (equal
base) and Representatives (proportional representation, with at
least one seat per state) in the United States Congress. The idea of
combining these two approaches to the apportionment problem
was first put forward by one of the Founding Fathers of the United
States and the future American President, James Madison in 1788
(Madison, 1788).

The quadratic (parabolic) method was proposed and advo-
cated by Ramírez González and his co-workers in a series of pa-
pers (Ramírez González, 2004; Ramírez-González et al., 2006;
Martínez-Aroza and Ramírez-González, 2008, 2010; Ramírez-
González, 2010).

The methods of apportionment of seats in the European
Parliament using base + power functions were also considered
by several authors, see Theil and Schrage (1977), Ramírez-
González et al. (2006), Arndt (2008), Martínez-Aroza and Ramírez-
González (2008), Martínez-Aroza and Ramírez-González (2010),
Słomczyński and Życzkowski (2010), Grimmett et al. (2012) and
Moberg (2012). Note that a similar method was proposed for
solving the taxation problem already in the nineteenth century
by a Dutch economist Arnold Jacob Cohen-Stuart (Cohen-Stuart,
1889). Moreover, the variant of this method (using the square-root
function) was also considered in Bummel (2010, p. 27).

As far as we know, out of five families presented above, only
the piecewise linear family has not yet been analyzed in detail
in the European Parliament context, since the homographic func-
tions have been independently studied under the name of pro-
jective quotas by Serafini (2012). On the other hand, yet another
class of ‘linear-hyperbolic’ functions was used both in the ap-
portionment problem for the European Parliament (Słomczyński
and Życzkowski, 2010) as well as in the tax schedule proposed
by a Swedish economist Karl Gustav Cassel at the beginning of
the twentieth century (Cassel, 1901). Note, that also the propor-
tional apportionment method with minimum and maximum re-
quirements (Balinski and Young, 2001, p. 133; Martínez-Aroza
and Ramírez-González, 2008) can be described within this general
framework, taking (neither concave nor convex) apportionment
function A given by A(t) = med(m, dt,M), where M/P < d <
m/p, and med stands for the median value of three.

For a simple and general algorithm of constructing families of
allocation functions see Section 5.

3. Allocation functions—necessary and sufficient conditions

In this section we present several simple propositions that give
necessary and sufficient conditions for a function A : [p, P] →

[m,M] to be a (degressive) allocation function. Almost all these
facts belong to mathematical folklore, but we provide short proofs
here for the completeness of presentation. First of all, observe that
an allocation function needs to be continuous, because, as a non-
decreasing function, it can only have jump discontinuities, but this
contradicts degressive proportionality.

We start from a simple characterization of allocation functions.

Proposition 1. A is an allocation function if and only if

A (s)
A (t)

≤ max

1,

s
t


, (15)

or equivalently

min

1,

s
t


≤

A (s)
A (t)

(16)

for every s, t ∈ [p, P].

See also Peetre (1970, p. 327).
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Proof. Let s < t , then (15) is equivalent to A (s) /A (t) ≤ 1. On the
other hand for s > t we get A (s) /A (t) ≤ s/t , as desired. �

Note that A need not be neither concave nor convex. (Consider,
e.g., the allocation function A : [2, 8] → [

√
2 + 1/2, 2

√
2 + 1/8]

given by A(t) =
√
t + 1/t for 2 ≤ t ≤ 8, that has an inflection

point at t = 4.) However, if A is an allocation function, then it can
be bounded from above by its greatest convex minorant and from
below by its least concave majorant. Because of this, it cannot be
neither ‘too convex’ nor ‘too concave’.

Corollary 2. If A is an allocation function, then

1 +
√
p/P

2
A (t) ≤

t (P − p)
P (t − p) + t (P − t)

A (t)

≤ A (t) ≤
t (P − p)

p (P − t) + t (t − p)
A (t)

≤
1 +

√
P/p

2
A (t) , (17)

for each t ∈ [p, P], where A and A denote, respectively, the greatest
convexminorant function and the least concavemajorant of A (i.e. the
largest convex function smaller than A and the smallest concave
function larger than A).

Proof. For t ∈ [p, P] we have A (t) = sup
n

i=1 λiA (ti), where the
sum runs over λi ≥ 0, ti ∈ [p, P] , n ∈ N, satisfying

n
i=1 λi =

1,
n

i=1 λiti = t . From (15) we get
n

i=1 λiA (ti) ≤ A (t) ×n
i=1 λi max


1, ti

t


≤

2Pt−Pp−t2

t(P−p) A (t). Hence A (t) ≥
t(P−p)

2Pt−Pp−t2
A (t)

≥
1+

√
p/P

2 A (t). The proof for the greatest convex minorant is
analogous. �

The next proposition gives a sufficient condition for a convex or
concave non-decreasing function to be an allocation function.

Proposition 3. If A is non-decreasing, concave and fulfills A (t) /t ≤

A (p) /p for all t ∈ [p, P], or if it is non-decreasing, convex and satisfies
A (t) /t ≥ A (P) /P for all t ∈ [p, P], then A is an allocation function.
In particular, every concave function A : [0, +∞) → [0, +∞) is an
allocation function restricted to any interval [p, P] for 0 < p < P.

Proof. In the former case to show that A is degressively
proportional, we observe that A(s)/s = A

 t−s
t−p · p +

s−p
t−p · t


/s ≥

A(p) t−s
(t−p)s +A(t) s−p

(t−p)s ≥ A(t)/t for s, t ∈ [p, P] , s < t , as required.
The proof for convex functions is analogous. �

In fact, if A : [p, P] → [m,M] is a restriction of the function
defined on the interval [0, P] such that A (0) = 0, then, to get
degressive proportionality, it is enough to assume that A is concave
on average, i.e., that the function [0, P] ∋ t → a (t) :=
1
t

 t
0 A (s) ds ∈ [0,M] is concave, since A(t)/t = a′ (t) + a (t) /t

for 0 < t ≤ P and both components are non-increasing functions
of t in this case, see Bruckner and Ostrow (1962, Theorem 5).

We call a function A : [p, P] → [m,M] subadditive if
A (s + t) ≤ A (s) + A (t) holds for every s, t, s + t ∈ [p, P]. The
subadditivity is the necessary condition for a function being an
allocation function, as the next proposition shows. (Analogously, in
taxation progressivity of income tax implies itsmerging-proofness,
see Ju and Moreno-Ternero (2011, Corollary 1).)

Proposition 4. If A is an allocation function, then A is subadditive.

See also Rosenbaum (1950, Theorem 1.4.3) and Hille and
Phillips (1957, Theorem 7.2.4).

Proof. Let s, t, s + t ∈ [p, P]. From the degressive proportionality
we get A (s + t) / (s + t) ≤ min (A (s) /s, A (t) /t). Hence
A (s + t) ≤ (s + t)


s

s+t
A(s)
s +

t
s+t

A(t)
t


= A (s) + A (t). �

The converse implication fails in general, but it holds for convex
and non-decreasing functions.

Corollary 5. If A : [p, +∞) → [m. + ∞) is convex and non-
decreasing, then A is an allocation function if and only if it is
subadditive.

See Rosenbaum (1950, Theorem 1.4.6).

Proof. According to Proposition 4 it is enough to show that
convex, non-decreasing and subadditive function is degressively
proportional. Let p < s < t . Then A (t) ≤

s
t A (s) +


1 −

s
t


×

A (s + t) ≤
s
t A (s)+


1 −

s
t


(A (s) + A (t)) = A (s)+


1 −

s
t


A (t).

Hence A (t) /t ≤ A (s) /s, as desired. �

4. Allocation functions—concave or convex?

Analyzing possible schemes of allocating seats in the European
Parliament several authors consider only concave allocation
functions (Martínez-Aroza and Ramírez-González, 2008, 2010).
However, as we have seen above, in the class of degressively
proportional functions convex and concave functions seem to play
similar roles, and both types of functions are represented in each
of five basic classes considered.

The affine allocation function (which lies on the border between
the concave and the convex realm) can serve as a solution of
the apportionment problem if and only if

N
i=1 Alin (pi) ≈ S.

This, however, is only an approximate statement because the
effect is influenced by the rounding procedure. Thus, in a concrete
case, whether convex or concave functions should be used in
the allocation scheme depends approximately on the sign of the
expression

N
i=1 Alin (pi) − S. Taking into account that

N
i=1

Alin (pi) − S =
(⟨P⟩ − p) (⟨M⟩ − m)N

P − p
(µ − ρ) , (18)

with

ρ :=
P − ⟨P⟩

⟨P⟩ − p
(19)

and

µ :=
M − ⟨M⟩

⟨M⟩ − m
, (20)

where ⟨P⟩ and ⟨M⟩ denote, respectively, the mean population of a
country and the mean number of seats per country, we see that
the solution of the dilemma depends on which of two numbers
is greater ρ or µ. If ρ ≥ µ one should use concave functions for
resolving the problem, if ρ ≤ µ, convex. Since

(µ − ρ) (⟨P⟩ − p) (⟨M⟩ − m)N2

= T (M − m) − (S (P − p) − N (mP − Mp)) ,

where T is the total population of the Union, S is the size of
the House, and N denotes the number of the Member States, the
inequality ρ ≥ µ can be rewritten in the following form affine in
T , S, and N:

T ≤ S ·
P − p
M − m

− N ·
mP − Mp
M − m

. (21)

In particular, this implies that any accession of a new state of
moderate size (to leave p and P unchanged) to the Union (which
means T ,N ↑), keeping ‘constitutional’ parameters (m,M, S)
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fixed, reduces the probability of finding concave solution of the
apportionment problem. Furthermore, the right hand side of (21)
is a decreasing function of both m and M (as long as Nm <
S < NM , which is both a natural and necessary assumption)
and an increasing function of S. In consequence, seeking concave
solutions, one has either to enlarge the size of the House, or to
lower the number of seats assigned to the smallest or to the largest
Member State (or both).

Note, however, that the treaties define only the minimal (Mmin)
and maximal (Mmax) numbers of seats in the Parliament, requiring
merely that m := A (p) ≥ Mmin and M := A (P) ≤ Mmax, as well as
the value of S. While we have to set the exact values ofm andM to
start the allocation procedure described in Section 1, our choice is
formally limited only by these inequalities. Thus, if we believe that
the concavity is a desirable feature of an allocation function and it
should be possibly incorporated to its definition, we have to agree
that the enlargement process will result at some point, defined
in fact by the equality in (21), in lowering the value of M below
Mmax. The only other solution of this problem one can imagine is
to introduce an amendment to the treaty either decreasing the
minimal number of seats Mmin or increasing the total number of
seats S. However, these two alternatives may be difficult to accept
for political reasons, and in this case decreasing the number M
seems to be the most feasible solution of the problem within the
‘concave’ realm.

5. Degressive proportionality through logarithmic eyes

We believe that it is sometimes better to analyze allocation
functions in logarithmic (log–log) coordinates, since this approach
provides us with a number of benefits, namely:

• It is more convenient to plot a graph of population-seats
relationship in these coordinates, and so, to compare different
allocation methods, since we have more small than large
member states in the European Union. NB, this is quite a natural
situation from the statistical point of view (‘the larger the
fewer’).

• In this setting it is easier to express our assumptions
(monotonicity and degressive proportionality) in a uniform
way.

• This approach gives us a better framework to analyze certain
additional properties of allocation methods.

Definition 2. Define L : [ln p, ln P] → [lnm, lnM] by

L(ln t) := ln A(t) (22)

for x ∈ [ln p, ln P]. In other words, L = ln ◦ A ◦ exp or A =

exp ◦ L ◦ ln.

The choice of a logarithmic base corresponds to the choice of a
unit and is not important here.

Proposition 6. Assume that a function A : [p, P] → [m,M] is
differentiable. Then the following equivalences are true:

A is non-decreasing iff L′
≥ 0

A is degressively proportional iff L′
≤ 1

A is an allocation function iff 0 ≤ L′
≤ 1.

The above statement gives us a clear mathematical interpreta-
tion of degressive proportionality. Now, our task can be reduced to
a search for a function L : [log p, log P] → [logm, logM] fulfilling
0 ≤ L′

≤ 1. These can be smoothly realized in a three-fold way:

1. L is affine (i.e. L′ is constant, i.e. L′
≡ c ∈ [0, 1]);

2. L is convex (i.e. L′ increases from, say, 0 to 1) (i.e. A is
geometrically convex, see Matkowski (1997));

Table 1
Population ratio (PQ) for exemplary pairs of member states and the corresponding
quotients of the number of seats (SQ) in the European Parliament for five classes
of allocation functions: 1 = base + prop, 2 = piecewise linear, 3 = parabolic,
4 = base + power, 5 = homographic with the rounding to the nearest integer.

Ratio PQ SQ1 SQ2 SQ3 SQ4 SQ5

RO/FR 0.332 0.376 0.397 0.413 0.418 0.413
LT/HU 0.332 0.556 0.632 0.526 0.526 0.526
FI/PT 0.503 0.677 0.737 0.684 0.650 0.684
LV/IE 0.503 0.727 0.769 0.727 0.750 0.727

3. L is concave (i.e. L′ decreases from, say, 1 to 0) (i.e. A is
geometrically concave, see Matkowski (1997)).

The first scenario leads to the power function (or in other words,
a base + power function with the base 0) given by A(t) := b td∗ ,
where

d∗ := (ln (M/m)) / (ln (P/p)) (23)

and

b := (M − m) /(Pd∗ − pd∗) = e[(lnm)(ln P)−(lnM)(ln p)]/ ln(P/p). (24)

Rather surprisingly, the distinction between the second and
third possibility seems to have a clear interpretation in terms
of properties of allocation function A, namely, the properties of
sub- and superproportionality. The notion of subproportionality
and the dual notion of superproportionality were introduced into
the decision theory by Daniel Kahneman, a Nobel Prize laureate
in economy, and Amos Tversky, a mathematical psychologists,
in (Kahneman and Tversky, 1979) and since then used by many
authors, see e.g. Al-Nowaihi and Dhami (2010). Let us recall their
definition.

Definition 3. We say that A is superproportional (subproportional)
iff for every s, t ∈ dom(A), s ≤ t and 0 ≤ r ≤ 1 such that
rs, rt ∈ dom(A) we have

A(rs)
A(rt)

≥
A(s)
A(t)


A(rs)
A(rt)

≤
A(s)
A(t)


. (25)

Proposition 7. Let L : [ln p, ln P] → [lnm, lnM] and A = exp ◦ L◦

ln. The following equivalences hold:

• L is convex iff A is superproportional;
• L is concave iff A is subproportional.

Proof. Note that A is superproportional iff L(b + a) − L(b) ≤

L(c + a) − L(c) for ln p ≤ b ≤ c ≤ c + a ≤ ln P . This property is
equivalent to convexity of L. The proof of the second equivalence
is analogous. �

To illustrate this property consider two pairs of member
states, Romania/France and Lithuania/Hungary, with the similar
population quotient (s/t ≈ 1/3) and another such configuration:
Finland/Portugal and Latvia/Ireland (s/t ≈ 1/2). In Table 1 the
values of seat quotients for five methods analyzed in Section 2
are shown. Note that in all these cases the seat quotient for the
‘smaller’ pair is greater than for the ‘larger’ one.

Using other words, a superproportional method leads to the
following property of an allocation system (at least before
rounding):

The smaller a pair of states is, the larger is the gain of the small
member in the pair over the large one.
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Thus, this is in fact a kind of degressive–degressive proportional-
ity. It is easy to show that if an allocation function A is subpropor-
tional, then it must be concave, and if it is convex it is necessarily
superproportional.

This approach leads also to a simple algorithm for constructing
allocation functions, see also Al-Nowaihi and Dhami (2010, Section
4). Choose a continuous function h : [p, P] → [0, 1] such that P

p

h(s)
s

ds = ln (M/m) . (26)

Solving the first-order homogeneous linear differential equation of
the form

A′ (x) =
h(x)
x

A (x) (27)

with the initial condition A (p) = mwe get the allocation function
given by the formula

A(t) = m exp
 t

p

h(s)
s

ds


(28)

that fulfills also the final condition A(P) = M . In fact, every
differentiable allocation function can be obtained in this way.
Moreover, A is superproportional (resp. subproportional) iff h is
increasing (resp. decreasing), which provides a simple test for
checking superproportionality.

To illustrate this technique consider the function h : [p, P] →

[0, 1] given by

h (t) =
d

1 + ct−d
, (29)

where the exact value of c :=
mPd−Mpd

M−m is determined by the
integral condition (26), and we assume additionally that either
d1 < d ≤ 1, where

d1 := inf{0 < d < 1 : (M/m − 1) d ≤ (P/p)d − 1}, (30)

or 1 < d < d2, where

d2 := sup{d > 1 : (1 − m/M) d ≤ 1 − (p/P)d}, (31)

in order to ensure that 0 ≤ h ≤ 1. Applying (28) we get a
base + power function A given by (10).

Clearly, the function h defined by (29) is increasing for c > 0
and decreasing for c < 0, and so the necessary and sufficient
condition for A being superproportional (resp. subproportional) in
this case is that c > 0 (resp. c < 0) or equivalently d > d∗ (resp.
d < d∗), where d∗ is given by (23) and d1 < d∗ < 1.

Summarizing, we have five possible forms of the base + power
allocation function:

• concave and subproportional function for d1 < d < d∗;
• power function for d = d∗;
• concave and superproportional function for d∗ < d < 1;
• affine function for d = 1;
• convex and superproportional function for 1 < d < d2.

Note, however, that in a concrete situation the choice of the
value of d is determined by the constraint (1).

6. The European Parliament

For the European Parliament we have the following values of
parameters: p = 412 970,Mmin = 6, P = 81 802 257,Mmax =

96, T = 501 103 425, S = 751, and N = 27. Assuming that
the upper and the lower bounds are saturated, m = Mmin and

M = Mmax we obtain ρ ≈ 3. 485 ≥ 3. 126 ≈ µ, so our choice
of an allocation function is limited to concave functions. However,
it follows from (21) that for the Parliament of size 703 or less we
would have to seek the solution of the apportionment problem in
the realm of convex functions or otherwise to relax the constraints
considering some M < Mmax. (Due to rounding, this number may
be somewhat smaller, cf. Kellermann (2012).) Thismeans also that,
in fact, we have currently only about fifty seats to allocate freely
besides the linear (or, saying more precisely, affine) distribution.

Analyzing five families of allocation functions and three
rounding methods we get fifteen possible solutions for the
apportionment problem, see Table 2.

Observe that all these solutions are quite similar, which is a
consequence of the fact that our choice is limited by two factors:
the predetermined shape of the graph of an allocation function,
and the fact that more than ninety percent of seats are in a sense
distributed in advance.More precisely, the results for the parabolic,
base + power, and homographic allocation functions are almost
identical, whereas the choice of the base + prop functions is
advantageous for large countries, and the choice of the piecewise
linear functions seems to be beneficial for small countries.

The influence of the choice of a rounding method on the
distribution of seats is a non-trivial mathematical problem even
for proportional apportionment (Balinski and Young, 2001; Janson,
2011), where it was proven that, statistically, the rounding
downwards is more often advantageous for large countries and
the rounding upwards for small countries, see Schuster et al.
(2003), Drton and Schwingenschlögl (2005) and Schwingenschlögl
(2008). In the case of the European Parliament one can observe
a similar effect for the base + linear, parabolic, base + power
and homographic functions, where the rounding downwards is
the best possibility and the rounding upwards is the worst for
large countries (from the Netherlands to France), whereas for
small countries (from Malta to Austria) the situation is reversed.
However, for the piecewise linear class we find completely
different pattern, and so it is not clear to what extent this rule
applies to degressively proportional apportionment.

As regards superproportionality, the base + prop method
is superproportional in the ‘affine’ part of its domain, i.e. for
all countries but the largest one, the piecewise linear method
for all countries but two smallest ones, and the parabolic
(resp. homographic) method are superproportional for small and
medium countries and subproportional for large five (resp. six)
ones.

The only one of the five methods that is superproportional in
the whole domain [p, P] is the base + power method. In fact, we
showed that this method is superproportional as long as d > d∗,
where d∗ is given by (23). In the analyzed case d∗ ≈ 0. 524 and d =

0.865, 0.894, 0.922 depending on the roundingmethod chosen, so
the condition is clearly fulfilled. Though it is not known whether
superproportionality iswhat the authors of the Lisbon Treaty really
intended, when they formulated the ‘degressive proportionality’
rule, we think that it is worth to realize that the base + power
method fulfills it for all pairs, whereas the other methods can
violate it for some countries. Thus base + power method is in a
sense more degressively proportional, or one can say degressively
proportional in more perfect way, than other methods analyzed
above. Incidentally, the base + power solution with c = 0.5 (the
square root) results (with downward rounding) in a round number
of 1000 members of the Parliament.

In Grimmett et al. (2011) the authors decided to select the
method called ‘Cambridge Compromise’, which is in this case
equivalent to the base + prop method (as defined above) with
the rounding to the nearest integer, mainly because of its obvious
simplicity. However, this solution has been criticized for being ‘not
enough degressively proportional’ (Moberg, 2012) and departing



100 W. Słomczyński, K. Życzkowski / Mathematical Social Sciences 63 (2012) 94–101

Table 2
Fifteen solutions of the apportionment problem for the European Parliament (five classes of allocation functions: 1 = base + prop, 2 = piecewise linear, 3 = parabolic,
4 = base + power, 5 = homographic; three rounding methods: d = downwards, m = to the nearest integer, u = upwards); LT = the distribution of seats under the Lisbon
Treaty; population figures are taken from the Eurostat website (OJ 22.12.2010 L 338/47).

Country Population LT 1d 1m 1u 2d 2m 2u 3d 3m 3u 4d 4m 4u 5d 5m 5u

Germany 81802257 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96 96
France 64714074 74 86 85 83 77 78 78 81 80 80 79 79 79 80 80 80
United Kingdom 62008048 73 82 81 80 74 75 75 78 78 77 76 76 76 77 77 77
Italy 60340328 73 80 79 78 73 73 73 76 76 75 74 74 74 76 76 75
Spain 45989016 54 62 62 61 57 57 58 62 61 60 60 59 59 61 61 60
Poland 38167329 51 53 52 51 49 49 49 53 52 52 52 51 51 53 52 51
Romania 21462186 33 32 32 32 31 31 31 33 33 32 33 33 32 33 33 32
Netherlands 16574989 26 26 26 26 26 26 26 27 27 26 27 27 27 27 27 26
Greece 11305118 22 19 19 19 20 20 20 20 20 20 21 21 20 20 20 20
Belgium 10839905 22 19 19 19 20 20 19 20 20 20 20 20 20 20 20 20
Portugal 10637713 22 18 18 19 19 19 19 19 19 19 20 20 20 20 19 19
Czech Republic 10506813 22 18 18 18 19 19 19 19 19 19 20 20 19 19 19 19
Hungary 10014324 22 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19
Sweden 9340682 20 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18
Austria 8 375290 19 15 16 16 17 17 17 16 16 16 17 17 17 17 17 17
Bulgaria 7 563710 18 14 15 15 16 16 16 15 15 15 16 16 16 15 15 15
Denmark 5534738 13 12 12 13 14 14 14 13 13 13 13 13 13 13 13 13
Slovakia 5 424925 13 12 12 12 14 14 14 12 13 13 13 13 13 13 13 13
Finland 5351427 13 12 12 12 14 14 14 12 13 13 13 13 13 12 13 13
Ireland 4467854 12 11 11 11 13 13 13 11 11 12 12 12 12 11 11 12
Lithuania 3 329039 12 9 10 10 12 12 11 10 10 10 10 10 11 10 10 10
Latvia 2 248374 9 8 8 9 11 10 10 8 8 9 9 9 9 8 8 9
Slovenia 2 046976 8 8 8 8 10 10 10 8 8 9 8 9 9 8 8 9
Estonia 1 340127 6 7 7 8 10 9 9 7 7 8 7 7 8 7 7 8
Cyprus 803147 6 6 6 7 9 9 9 6 7 7 6 7 7 6 7 7
Luxembourg 502066 6 6 6 7 7 7 8 6 6 7 6 6 7 6 6 7
Malta 412970 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
EU-27 501103425 751 751 751 751 751 751 751 751 751 751 751 751 751 751 751 751

Fig. 1. Allocation functions applied to the European Parliament; panel (a): concave base + prop function (3) (solid line), piecewise linear function (6) (∗), and parabolic
function (7) (+); panel (b): function (3) drawn as a reference solid line, base + power function (10) (∗), and homographic function (12) (+). The argument t denotes the
population of a state in millions, while A is scaled to determine the corresponding number of seats in the Parliament consisting of S = 751 members with the constraints
m = 6 and M = 96 seats.

too much from the status quo. In Grimmett et al. (2012) the
solution very similar to the base + power method discussed
here is considered ‘as a step along a continuous transition from
the negotiated status quo composition to the constitutionally
principled Cambridge Compromise’. (Indeed this method is closest
to the status quo out of all methods analyzed in Table 2.) The
crucial point in these discussions seems to be the meaning of
the term ‘degressive proportionality’. Is it only a lame form of
(pure) proportionality, as it was actually suggested in Grimmett
et al. (2012) or is it a separate notion that requires distinct
mathematical and political solutions, as Moberg (2012) claims? In
this paperwe have tried to shed new light on this debate, analyzing
mathematical properties of degressively proportional allocation
functions and indicating the differences between various classes
of such functions.

If we are looking for a degressively proportional (resp.
degressively proportional and superproportional) and increasing
function, in the log–log realm we have to find a function (resp.
convex function) with the derivative contained between 0 and

1. Adding to this, three constraints related to the minimum and
maximum number of seats and to the size of the House, we see
that our choice is in fact very limited and all the solution satisfying
these conditions must look quite similar—see Fig. 1.

The key possibility to vary the allocation schemes considerably
is to change the number M of the seats allotted to the largest
member state. As specified in the Treaty of Lisbon the upper bound
reads Mmax = 96, but this bound needs not to be saturated and
one may also take M < Mmax. By doing so, one introduces more
freedom into the space of possible solutions, as more seats can be
allotted besides the affine distribution.

Note also that by extending the Union and keeping the number
M fixed (which is, however, in the ‘concave realm’, doable only
up to a certain total population of the Union), the seats for the
new member states are donated by all but the largest state. If any
further enlargement of the Union was performed according to this
scheme, the ratio of the seats in the European Parliament allocated
to the largest state would remain constant. In consequence, as the
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number N of the member states was increased, the voting power
of the largest state in the European Union would grow.

These arguments show that the choice of the number M
selected to design an allocation system is crucial. The issue: under
what conditions the constraint M = Mmax should be relaxed
seems to be equally important as the choice of the actual form of
allocation function. As regards the latter, it is rather difficult task to
distinguish in practice one of them. From an academic perspective,
however, it would be interesting to base the solution of the
‘degressive’ allocation problem on an axiomatic approach, possibly
considering some additional properties of allocation functions as
concavity and superproportionality.
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