Geometry of Quantum States

Ingemar Bengtsson and Karol Życzkowski

An Introduction to Quantum Entanglement
1 Convexity, colours and statistics 1
 1.1 Convex sets .. 1
 1.2 High dimensional geometry 8
 1.3 Colour theory .. 12
 1.4 What is “distance”? ... 16
 1.5 Probability and statistics 22

2 Geometry of probability distributions 26
 2.1 Majorization and partial order 26
 2.2 Shannon entropy ... 32
 2.3 Relative entropy ... 37
 2.4 Continuous distributions and measures 41
 2.5 Statistical geometry and the Fisher–Rao metric 43
 2.6 Classical ensembles .. 49
 2.7 Generalized entropies ... 51

3 Much ado about spheres 57
 3.1 Spheres .. 57
 3.2 Parallel transport and statistical geometry 61
 3.3 Complex, Hermitian, and Kähler manifolds 67
 3.4 Symplectic manifolds ... 72
 3.5 The Hopf fibration of the 3-sphere 74
 3.6 Fibre bundles and their connections 79
 3.7 The 3-sphere as a group 86
 3.8 Cosets and all that ... 90

4 Complex projective spaces 93
 4.1 From art to mathematics 93
 4.2 Complex projective geometry 97
 4.3 Complex curves, quadrics and the Segre embedding 99
 4.4 Stars, spinors, and complex curves 102
 4.5 The Fubini-Study metric 105
 4.6 \mathbb{CP}^n illustrated 110
4.7 Symplectic geometry and the Fubini–Study measure 116
4.8 Fibre bundle aspects 117
4.9 Grassmannians and flag manifolds 120

5 Outline of quantum mechanics 124
5.1 Quantum mechanics 124
5.2 Qubits and Bloch spheres 126
5.3 The statistical and the Fubini-Study distances 129
5.4 A real look at quantum dynamics 131
5.5 Time reversals 135
5.6 Classical & quantum states: a unified approach 138

6 Coherent states and group actions 143
6.1 Canonical coherent states 143
6.2 Quasi-probability distributions on the plane 148
6.3 Bloch coherent states 155
6.4 From complex curves to $SU(K)$ coherent states 160
6.5 $SU(3)$ coherent states 162

7 The stellar representation 166
7.1 The stellar representation in quantum mechanics 166
7.2 Orbits and coherent states 168
7.3 The Husimi function 171
7.4 Wehrl entropy and the Lieb conjecture 175
7.5 Generalised Wehrl entropies 178
7.6 Random pure states 180
7.7 From the transport problem to the Monge distance 185

8 The space of density matrices 190
8.1 Hilbert–Schmidt space and positive operators 190
8.2 The set of mixed states 193
8.3 Unitary transformations 196
8.4 The space of density matrices as a convex set 199
8.5 Stratification 204
8.6 An algebraic afterthought 208
8.7 Summary 210

9 Purification of mixed quantum states 212
9.1 Tensor products and state reduction 212
9.2 The Schmidt decomposition 215
9.3 State purification & the Hilbert-Schmidt bundle 217
9.4 A first look at the Bures metric 220
9.5 Bures geometry for $N = 2$ 223
9.6 Further properties of the Bures metric 224
Contents

10 Quantum operations 228
 10.1 Measurements and POVMs 228
 10.2 Algebraic detour: matrix reshaping and reshuffling 235
 10.3 Positive and completely positive maps 238
 10.4 Environmental representations 243
 10.5 Some spectral properties 245
 10.6 Unital & bistochastic maps 247
 10.7 One qubit maps 249

11 Duality: maps versus states 254
 11.1 Positive & decomposable maps 254
 11.2 Dual cones and super-positive maps 261
 11.3 Jamiołkowski isomorphism 262
 11.4 Quantum maps and quantum states 265

12 Density matrices and entropies 268
 12.1 Ordering operators 268
 12.2 Von Neumann entropy 271
 12.3 Quantum relative entropy 277
 12.4 Other entropies 281
 12.5 Majorization of density matrices 283
 12.6 Entropy dynamics 287

13 Distinguishability measures 291
 13.1 Classical distinguishability measures 291
 13.2 Quantum distinguishability measures 296
 13.3 Fidelity and statistical distance 299

14 Monotone metrics and measures 305
 14.1 Monotone metrics 305
 14.2 Product measures and flag manifolds 310
 14.3 Hilbert-Schmidt measure 312
 14.4 Bures measure 315
 14.5 Induced measures 317
 14.6 Random density matrices 319
 14.7 Random operations 322

15 Quantum entanglement 326
 15.1 Introducing entanglement 326
 15.2 Two qubit pure states; entanglement illustrated 329
 15.3 Pure states of a bipartite system 334
 15.4 Mixed states and separability 342
 15.5 Geometry of the set of separable states 349
 15.6 Entanglement measures 353
 15.7 Two qubit mixed states 362

Epilogue 371
Appendix 1 Basic notions of differential geometry 372
 A1.1 Differential forms ... 372
 A1.2 Riemannian curvature .. 373
 A1.3 A key fact about mappings .. 374

Appendix 2 Basic notions of group theory 375
 A2.1 Lie groups and Lie algebras 375
 A2.2 SU(2) ... 376
 A2.3 SU(N) .. 376
 A2.4 Homomorphisms between low-dimensional groups 377

Appendix 3 Geometry—do it yourself 378

Appendix 4 Hints and answers to the exercises 382

Index 390
Index

algebra, 219
 Jordan, 220

bundle, 85
 principal, 85, 87
 tangent, 87
 tautological, 123
 trivial, 86
 vector, 87

characteristic equation, 202
cone
 convex, 3
dual, 3
connection, 65
 exponential, 70
 Levi-Civita, 65
mixture, 70
on fibre bundle, 87, 124
preferred, 90, 124
convex
 body, 3, 17
 cone, 201, 219
function, 6
 hull, 3
polytope, 3
Schur, 30
set, 2
coordinates, 18, 21
 affine, 66
 complex, 72
Euler angles, 84
exponential, 203
godesic polar, 95
gnomonic, 62
homogeneous, 100
mixture, 203
octant, 116
orthographic, 60
spherical polar, 8
stereographic, 61
distance, 16
 $L_p, 205$
 $L_\infty, 17, 23, 56$
 Bhattacharyya, 47
 Bures, 304
 Fubini–Study, 111, 136
godesic, 20
 Helvinger, 47
 Hilbert-Schmidt, 205
 Kolmogorov, 17, 55
 Minkowski, 16
taxi cab, 17, 55
trace, 205
distribution
 conditional, 24
Dirichlet, 50
Glauber–Sudarshan, 159
Husimi, 158, 177
joint, 24
 marginal, 24
 multinomial, 23
 Wigner, 155
duality, 101
embedding, 21
Segre, 106
ensemble
 classical, 49
 entangling power, 268
entropy
 average, 319, 323
Boltzmann, 41
 channel, 263
gate entanglement, 268, 273
Havrda–Charvat, 55
linear, 51
Page formula, 320
 relative, 37
Rényi, 51, 58
Shannon, 32, 51
structural, 58
von Neumann, 319
Wehrl, 160, 181
face, 4
fidelity, 136
 average, 324
 classical, 47
flip, 254
form, 19
Kähler, 76
symplectic, 78, 122, 138
functions
 Bargmann, 177
digamma, 184
Morozova-·Cencov, 303, 323
 operator concave, 303
operator monotone, 303, 322
Index

391

gates
 canonical form, 269, 274
 CNOT, 271, 272
 distance, 267
 Fourier, 272
 local, 268
 locally equivalent, 269
 one-qubit, 267
 SWAP, 271, 272, 275
two-qubit, 268, 275
two-rebit, 275
grovesic, 20, 63
 on CP^n, 112, 125
totally, 111
Ginibre ensemble, 320

group
 Borel subgroup, 127
 coherence, 154
 Heisenberg, 150
 isotropy, 127
 Lie, 92
 Möbius, 109
 parabolic subgroup, 127
 projective, 105
 symmetric, 108
 Weyl, 150

holonomy, 89
hyperplane, 2
 support, 6

inequality
 Hölder, 17
 Jensen, 7
 Pinsker, 58
 triangle, 16

information
 mutual, 40
 information content, 274
 insphere and outsphere, 8
 interaction content, 270

Jamiołkowski isomorphism, 262, 264

kernel, 200
Killing vector, 63
 on CP^n, 119, 136

Kraus
 representation, 274

lattice, 5, 104
orthocomplemented, 214

law
 quarter circle, 324

lemma
 Horn, 29
 reshuffling, 257

magic basis, 270
majorisation, 273
majorization, 26
manifold, 18
 base, 85
 complex, 74

flag, 126, 215, 308
 group, 92
 Hermitian, 75
 Kähler, 74, 76, 113, 154
 parallelizable, 93
 Stiefel, 128
 stratified, 174, 217
 symplectic, 78

maps
 bistochastic, 271, 322
 Choi, 259
 CP, 256
decomposable, 258
 indecomposable, 260
 positive, 256, 274
 random, 322
 unistochastic, 271, 274, 321

Markov chain, 31

matrix
 bistochastic, 28
dynamical, 262
 Fourier, 269, 272
 Hadamard, 275
 isometry, 213
 normal, 200
 orthostochastic, 29
 positive, 204
 stochastic, 28
 unistochastic, 29
 Wishart, 316

measure, 42
 Bures, 314, 319
 Fubini–Study, 122, 316, 321, 323
 Haar, 95, 308, 322
 Hilbert–Schmidt, 311, 319
 induced, 315
 operation induced, 321
 product, 308

measurement
 approximate, 250
 postulate, 246
 POVM, 247
 projective, 247
 selective, 245

metric
 Bures, 304
 Fisher–Rao, 44, 66
 Fubini–Study, 112, 116, 135, 305
 induced, 21
 Kubo–Mori, 304, 307
 monotone, 46, 55, 303
 Riemannian, 19, 303, 307, 323

mixed
 point, 4
 state, 131

neg rank, 256

norm, 16
 L_p, 17, 180

operations
 random, 321
orbit, 96
 adjoint, 128
partial trace, 245
polarity, 101
positivity, 261
complete, 261, 274
complete co, 261
POVM, 247
prior
Jeffrey’s, 50
uniform, 49
pure
point, 4
state, 131
purity, 51
quantum
gates, 266
operation, 245
quaternions, 143, 220
qubit, 134
random
operations, 321
rank, 5, 211
reshaping, 250
reshuffling, 252, 253
Schmidt
decomposition, 252
strength, 274
vector, 252, 270, 274
Schur convexity, 30
section
conic, 102
global, 87
of S^1, 91
of bundle, 86
separability criterion, 259
simplex, 3
eigenvalue, 209, 212
regular, 10
singlar values, 202
space
affine, 1
bundle, 85
complex projective, 103, 172
coset, 96, 127
cotangent, 19
Grassmannian, 104, 126
Hilbert-Schmidt, 200
homogeneous, 96
lens, 175
non-orientable, 102
orbit, 174
quotient, 96
real projective, 100, 173
sample, 21
tangent, 18, 42
Teichmüller, 74
sphere
Berger, 95, 121
Bloch, 133
celestial, 172
incontractible, 120
round, 60
squashed, 95, 121
spinor, 109
principal, 110
state
Bloch coherent, 177
cat, 158
cohesent, 153
Dicke, 161
Fock, 151, 158
intelligent, 163
maximally mixed, 203
random, 317
squeezed, 158
structural physical approximation, 261
subadditivity, 34
support, 55, 200

theorem
Cencov, 46, 303
Birkhoff, 30
Carathéodory, 5
Chernoff, 57
Chow, 105
Cramér–Rao, 47
de Finetti, 49
Frobenius, 143
Frobenius–Perron, 31
Helly, 25
Kadison, 206
Löwner, 304
Minkowski, 5
Neumark, 248
Pythagorean, 38, 68
Sanov, 37
Schrödinger, 213
Schur, 30
Shannon, 33
Störmer–Woronowicz, 258
Wigner, 114
torus, 74
Cartan, 97
in $\mathbb{C}{\mathbb{P}}^n$, 116
transformation
anti-unitary, 114, 141, 173
Möbius, 109, 172
Radon, 157
unitary, 245
transposition, 256
partial, 253
vector
Schmidt, 268, 270
volume
convex bodies, 11
density matrices, 312
flag manifold, 308
orthogonal groups, 323
unitary groups, 309
Weyl chamber, 215