Generalized entropies: its connections with Shannon and Kolmogorov-Sinai entropies and an invariant based on this concept

Fryderyk Falniowski

Department of Mathematics, Cracow University of Economics

seminarium „Chaos i informacja kwantowa”,
Kraków, 4.11.2013
Let \((X, \Sigma, \mu)\) be a probability space
\(T : X \to X\) - (measurable) measure-preserving transformation
For a finite partition \(\mathcal{P} = \{E_1, \ldots, E_k\}\) we consider a join partition
\[
\mathcal{P}_n := \bigvee_{i=0}^{n-1} T^{-i} \mathcal{P} := \left\{ \bigcap_{i=0}^{n-1} A_i, \quad \text{where } A_i \in T^{-i} \mathcal{P} \text{ for } i = 0, \ldots, n-1 \right\}
\]
where
\[T^{-i} \mathcal{P} = \{T^{-i} E_1, \ldots, T^{-i} E_k\}.\]
Let
\[
\eta(x) = \begin{cases}
0, & x = 0; \\
-x \ln x, & x \in (0, 1].
\end{cases}
\]
Let \((X, \Sigma, \mu)\) be a probability space

\(T : X \rightarrow X\) - (measurable) measure-preserving transformation

For a finite partition \(\mathcal{P} = \{E_1, \ldots, E_k\}\) we consider a join partition

\[
\mathcal{P}_n := \bigvee_{i=0}^{n-1} T^{-i} \mathcal{P} := \bigcap_{i=0}^{n-1} A_i, \text{ where } A_i \in T^{-i} \mathcal{P} \text{ for } i = 0, \ldots, n-1
\]

where

\[
T^{-i} \mathcal{P} = \{T^{-i} E_1, \ldots, T^{-i} E_k\}.
\]

Let

\[
\eta(x) = \begin{cases}
0, & x = 0; \\
-x \ln x, & x \in (0, 1].
\end{cases}
\]
Let \((X, \Sigma, \mu)\) be a probability space
\(T : X \to X\) - (measurable) measure-preserving transformation
For a finite partition \(\mathcal{P} = \{E_1, ..., E_k\}\) we consider a join partition
\[
\mathcal{P}_n := \bigvee_{i=0}^{n-1} T^{-i}\mathcal{P} := \bigcap_{i=0}^{n-1} A_i, \text{ where } A_i \in T^{-i}\mathcal{P} \text{ for } i = 0, ..., n - 1
\]
where
\[
T^{-i}\mathcal{P} = \{T^{-i}E_1, ..., T^{-i}E_k\}.
\]
Let
\[
\eta(x) = \begin{cases}
0, & x = 0; \\
-x \ln x, & x \in (0, 1].
\end{cases}
\]
Dynamical and Kolmogorov-Sinai entropy

Let

\[H(\mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} \eta(\mu(A)). \]

We define the entropy of the transformation \(T \) with respect to the partition \(\mathcal{P} \) (the dynamical entropy) as

\[h_{\mu}(T, \mathcal{P}) = h(\mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} H(\mathcal{P}_n). \] (1)

For a given system \((X, \Sigma, \mu, T)\) we define the Kolmogorov-Sinai entropy of \(T \) (with respect to \(\mu \)) as

\[h_{\mu}(g, T) = \sup_{\mathcal{P} \text{ finite}} h_{\mu}(T, \mathcal{P}). \] (2)
Dynamical and Kolmogorov-Sinai entropy

Let

\[H(\mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} \eta(\mu(A)). \]

We define the entropy of the transformation \(T \) with respect to the partition \(\mathcal{P} \) (the dynamical entropy) as

\[h_\mu(T, \mathcal{P}) = h(\mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} H(\mathcal{P}_n). \tag{1} \]

For a given system \((X, \Sigma, \mu, T)\) we define the Kolmogorov-Sinai entropy of \(T \) (with respect to \(\mu \)) as

\[h_\mu(g, T) = \sup_{\mathcal{P} - \text{finite}} h_\mu(T, \mathcal{P}). \tag{2} \]
Dynamical and Kolmogorov-Sinai entropy

Let
\[H(\mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} \eta(\mu(A)). \]

We define the entropy of the transformation \(T \) with respect to the partition \(\mathcal{P} \) (the dynamical entropy) as
\[h_{\mu}(T, \mathcal{P}) = h(\mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} H(\mathcal{P}_n). \] (1)

For a given system \((X, \Sigma, \mu, T) \) we define the Kolmogorov-Sinai entropy of \(T \) (with respect to \(\mu \)) as
\[h_{\mu}(g, T) = \sup_{\mathcal{P} \text{ finite}} h_{\mu}(T, \mathcal{P}). \] (2)
Reasons of the generalization

- KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
- how important are properties of $\eta(x) = -x \ln x$ for the entropy in dynamical systems
- many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions
Reasons of the generalization

- KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
 - how important are properties of $\eta(x) = -x \ln x$ for the entropy in dynamical systems
 - many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions
Reasons of the generalization

- KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
- how important are properties of $\eta(x) = -x \ln x$ for the entropy in dynamical systems
- many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions
Reasons of the generalization

- KS entropy is an isomorphism invariant; what about systems with equal entropy (e.g. zero entropy systems)
- how important are properties of $\eta(x) = -x \ln x$ for the entropy in dynamical systems
- many articles were written by physicists, where generalized entropies were used but there are just few strict results or definitions
Dynamical g-entropy

\[G_0 = \{ g: [0, 1] \to \mathbb{R}, \ g - \text{concave}, \ g(0) = \lim_{x \to 0^+} g(x) = 0 \}. \]

Let \(g \in G_0 \). We define the g-entropy of the transformation \(T \) with respect to the partition \(\mathcal{P} \) (the dynamical g-entropy) as

\[h_\mu(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \lim_{n \to \infty} \sup \frac{1}{n} \sum_{A \in \mathcal{P}_n} g(\mu(A)). \quad (3) \]

For \(g = \eta \) we obtain

\[h(\mathcal{P}) = \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A). \]
Dynamical g-entropy

$G_0 = \{ g: [0, 1] \mapsto \mathbb{R}, \ g - \text{concave}, \ g(0) = \lim_{x \to 0^+} g(x) = 0 \}.$

Let $g \in G_0$. We define the g-entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical g-entropy) as

$$h_\mu(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{A \in \mathcal{P}_n} g(\mu(A)).$$

(3)

For $g = \eta$ we obtain

$$h(\mathcal{P}) = \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A).$$
Dynamical g-entropy

$G_0 = \{ g: [0, 1] \mapsto \mathbb{R}, \ g \ - \text{concave}, \ g(0) = \lim_{x \to 0^+} g(x) = 0 \}.$

Let $g \in G_0$. We define the g-entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical g-entropy) as

$$h_{\mu}(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{A \in \mathcal{P}_n} g(\mu(A)).$$ \hspace{1cm} (3)

For $g = \eta$ we obtain

$$h(\mathcal{P}) = \lim_{n \to \infty} -\frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A).$$
Dynamical g-entropy

\[\mathcal{G}_0 = \{ g: [0, 1] \to \mathbb{R}, \ g - \text{concave}, \ g(0) = \lim_{x \to 0^+} g(x) = 0 \}. \]

Let $g \in \mathcal{G}_0$. We define the g-entropy of the transformation T with respect to the partition \mathcal{P} (the dynamical g-entropy) as

\[h_{\mu}(g, T, \mathcal{P}) = h(g, \mathcal{P}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{A \in \mathcal{P}_n} g(\mu(A)). \quad (3) \]

For $g = \eta$ we obtain

\[h(\mathcal{P}) = \lim_{n \to \infty} - \frac{1}{n} \sum_{A \in \mathcal{P}_n} \mu(A) \ln \mu(A). \]
Theorem
Let \mathcal{P} be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g_1'(0) = g_2'(0) = \infty$, then

$$\liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty,$$

and $h(g_2, \mathcal{P}) < \infty$, then

$$\liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}) \leq h(g_1, \mathcal{P}).$$

If additionally $\limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

$$h(g_1, \mathcal{P}) \leq \limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}).$$

3. If $h(g_2, \mathcal{P}) = \infty$ and $\liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} > 0$, then $h(g_1, \mathcal{P}) = \infty$.
Theorem
Let \mathcal{P} be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g_1'(0) = g_2'(0) = \infty$,

 \[
 \liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty,
 \]

 and $h(g_2, \mathcal{P}) < \infty$, then

 \[
 \liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}) \leq h(g_1, \mathcal{P}).
 \]

 If additionally $\limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

 \[
 h(g_1, \mathcal{P}) \leq \limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}).
 \]

3. If $h(g_2, \mathcal{P}) = \infty$ and $\liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} > 0$, then $h(g_1, \mathcal{P}) = \infty$.
Theorem
Let \mathcal{P} be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g_1'(0) = g_2'(0) = \infty$,

\[\lim \inf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty, \]

and $h(g_2, \mathcal{P}) < \infty$, then

\[\lim \inf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}) \leq h(g_1, \mathcal{P}). \]

If additionally $\lim \sup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

\[h(g_1, \mathcal{P}) \leq \lim \sup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}). \]

3. If $h(g_2, \mathcal{P}) = \infty$ and $\lim \inf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} > 0$, then $h(g_1, \mathcal{P}) = \infty$.
Theorem
Let \mathcal{P} be a finite partition.

1. If $g \in \mathcal{G}_0$ is such that $g'(0) < \infty$, then $h(g, \mathcal{P}) = 0$.

2. If $g_1, g_2 \in \mathcal{G}_0$ are such that $g_1'(0) = g_2'(0) = \infty$,

\[
\liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty,
\]

and $h(g_2, \mathcal{P}) < \infty$, then

\[
\liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}) \leq h(g_1, \mathcal{P}).
\]

If additionally $\limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} < \infty$, then

\[
h(g_1, \mathcal{P}) \leq \limsup_{x \to 0^+} \frac{g_1(x)}{g_2(x)} \cdot h(g_2, \mathcal{P}).
\]

3. If $h(g_2, \mathcal{P}) = \infty$ and $\liminf_{x \to 0^+} \frac{g_1(x)}{g_2(x)} > 0$, then $h(g_1, \mathcal{P}) = \infty$.

The behaviour of the quotient \(g(x)/\eta(x) \) as \(x \) converges to zero appears to be crucial for our considerations. Let

\[
\text{Ci}(g) := \lim \inf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \quad \text{Cs}(g) := \lim \sup_{x \to 0^+} \frac{g(x)}{\eta(x)}.
\]

and

\[
\text{C}(g) := \lim_{x \to 0^+} \frac{g(x)}{\eta(x)}.
\]

Define

\[
\mathcal{G}_0^0 = \{g \in \mathcal{G}_0 \mid \text{C}(g) = 0\},
\]
e.g. \(g(x) = \frac{x-x^\alpha}{\alpha-1}, \alpha > 1, \ g(x) = x \ln(1 - \ln x) \);

\[
\mathcal{G}_0^{\text{Sh}} = \{g \in \mathcal{G}_0 \mid 0 < \text{C}(g) < \infty\}, \quad \text{e.g.} \ g(x) = -x \ln \sin x;
\]

\[
\mathcal{G}_0^\infty = \{g \in \mathcal{G}_0 \mid \text{C}(g) = \infty\},
\]
e.g. \(g(x) = \sqrt{x}, \ g(x) = \frac{x-x^\alpha}{\alpha-1}, \alpha \in (0, 1) \).
The behaviour of the quotient \(g(x)/\eta(x) \) as \(x \) converges to zero appears to be crucial for our considerations. Let

\[
\text{Ci}(g) := \liminf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \quad \text{Cs}(g) := \limsup_{x \to 0^+} \frac{g(x)}{\eta(x)},
\]

and

\[
\text{C}(g) := \lim_{x \to 0^+} \frac{g(x)}{\eta(x)}.
\]

Define

\[
G^0_0 = \left\{ g \in G_0 \mid \text{C}(g) = 0 \right\},
\]

e.g. \(g(x) = \frac{x-x^\alpha}{\alpha-1}, \alpha > 1, g(x) = x \ln(1-\ln x); \)

\[
G^{\text{Sh}}_0 = \left\{ g \in G_0 \mid 0 < \text{C}(g) < \infty \right\}, \quad \text{e.g. } g(x) = -x \ln \sin x;
\]

\[
G_0^\infty = \left\{ g \in G_0 \mid \text{C}(g) = \infty \right\},
\]

e.g. \(g(x) = \sqrt{x}, \quad g(x) = \frac{x-x^\alpha}{\alpha-1}, \alpha \in (0,1). \)
The behaviour of the quotient $g(x)/\eta(x)$ as x converges to zero appears to be crucial for our considerations. Let

$$\text{Ci}(g) := \lim \inf_{x \to 0^+} \frac{g(x)}{\eta(x)}, \quad \text{Cs}(g) := \lim \sup_{x \to 0^+} \frac{g(x)}{\eta(x)}.$$

and

$$C(g) := \lim_{x \to 0^+} \frac{g(x)}{\eta(x)}.$$

Define

$$\mathcal{G}_0^0 = \{ g \in \mathcal{G}_0 \mid C(g) = 0 \},$$

e.g. $g(x) = \frac{x-x^\alpha}{\alpha-1}, \alpha > 1, g(x) = x \ln(1 - \ln x);$

$$\mathcal{G}_0^{\text{Sh}} = \{ g \in \mathcal{G}_0 \mid 0 < C(g) < \infty \}, \quad \text{e.g.} \quad g(x) = -x \ln \sin x;$$

$$\mathcal{G}_0^\infty = \{ g \in \mathcal{G}_0 \mid C(g) = \infty \},$$

e.g. $g(x) = \sqrt{x}, \quad g(x) = \frac{x-x^\alpha}{\alpha-1}, \alpha \in (0,1).$
The behaviour of the quotient $g(x)/\eta(x)$ as x converges to zero appears to be crucial for our considerations. Let

$$
Ci(g) := \lim_{x \to 0^+} \inf \frac{g(x)}{\eta(x)}, \quad Cs(g) := \lim_{x \to 0^+} \sup \frac{g(x)}{\eta(x)}.
$$

and

$$
C(g) := \lim_{x \to 0^+} \frac{g(x)}{\eta(x)}.
$$

Define

$$
\mathcal{G}_0^0 = \{g \in \mathcal{G}_0 \mid C(g) = 0\},
$$
e.g. $g(x) = \frac{x-x^\alpha}{\alpha-1}$, $\alpha > 1$, $g(x) = x \ln(1 - \ln x)$;

$$
\mathcal{G}_0^{\text{Sh}} = \{g \in \mathcal{G}_0 \mid 0 < C(g) < \infty\}, \quad \text{e.g. } g(x) = -x \ln \sin x;
$$

$$
\mathcal{G}_0^\infty = \{g \in \mathcal{G}_0 \mid C(g) = \infty\},
$$
e.g. $g(x) = \sqrt{x}$, $g(x) = \frac{x-x^\alpha}{\alpha-1}$, $\alpha \in (0, 1)$.
The behaviour of the quotient $g(x)/\eta(x)$ as x converges to zero appears to be crucial for our considerations. Let

$$\text{Ci}(g) := \lim_{x \to 0^+} \inf \frac{g(x)}{\eta(x)}, \quad \text{Cs}(g) := \lim_{x \to 0^+} \sup \frac{g(x)}{\eta(x)}.$$

and

$$\text{C}(g) := \lim_{x \to 0^+} \frac{g(x)}{\eta(x)}.$$

Define

$$\mathcal{G}_0^0 = \{ g \in \mathcal{G}_0 \mid \text{C}(g) = 0 \},$$

e.g. $g(x) = \frac{x-x^\alpha}{\alpha-1}$, $\alpha > 1$, $g(x) = x \ln(1 - \ln x)$;

$$\mathcal{G}_0^{\text{Sh}} = \{ g \in \mathcal{G}_0 \mid 0 < \text{C}(g) < \infty \}, \quad \text{e.g.} \quad g(x) = -x \ln \sin x;$$

$$\mathcal{G}_0^\infty = \{ g \in \mathcal{G}_0 \mid \text{C}(g) = \infty \},$$

e.g. $g(x) = \sqrt{x}$, $g(x) = \frac{x-x^\alpha}{\alpha-1}$, $\alpha \in (0, 1)$.
Corollary
Let \(\mathcal{P} \) be a finite partition and \(g \in \mathcal{G}_0 \). Then
1. If \(C_i(g) < \infty \), then \(h(g, \mathcal{P}) \geq C_i(g) \cdot h(\mathcal{P}) \).
2. If \(C_s(g) < \infty \), then \(h(g, \mathcal{P}) \in (C_i(g) \cdot h(\mathcal{P}), C_s(g) \cdot h(\mathcal{P})) \).
3. If \(g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{sh} \), then \(h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P}) \).
4. If \(g \in \mathcal{G}_0^\infty \) and \(h(\mathcal{P}) > 0 \), then \(h(g, \mathcal{P}) = \infty \).

Theorem
Let \(g \in \mathcal{G}_0^\infty \) and \(T \) be an aperiodic, surjective automorphism of a Lebesgue space \((X, \Sigma, \mu)\) and let \(\gamma \in \mathbb{R} \). Then there exists a partition \(\mathcal{P} = \{E, X \setminus E\} \), such that
\[
h(g, \mathcal{P}) \geq \gamma.
\]
Corollary
Let \mathcal{P} be a finite partition and $g \in \mathcal{G}_0$. Then

1. If $\text{Ci}(g) < \infty$, then $h(g, \mathcal{P}) \geq \text{Ci}(g) \cdot h(\mathcal{P})$.
2. If $\text{Cs}(g) < \infty$, then $h(g, \mathcal{P}) \in (\text{Ci}(g) \cdot h(\mathcal{P}), \text{Cs}(g) \cdot h(\mathcal{P}))$.
3. If $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{\text{Sh}}$, then $h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P})$.
4. If $g \in \mathcal{G}_0^\infty$ and $h(\mathcal{P}) > 0$, then $h(g, \mathcal{P}) = \infty$.

Theorem
Let $g \in \mathcal{G}_0^\infty$ and T be an aperiodic, surjective automorphism of a Lebesgue space (X, Σ, μ) and let $\gamma \in \mathbb{R}$. Then there exists a partition $\mathcal{P} = \{E, X \setminus E\}$, such that

$$h(g, \mathcal{P}) \geq \gamma.$$
Corollary
Let \mathcal{P} be a finite partition and $g \in \mathcal{G}_0$. Then

1. If $\text{Ci}(g) < \infty$, then $h(g, \mathcal{P}) \geq \text{Ci}(g) \cdot h(\mathcal{P})$.
2. If $\text{Cs}(g) < \infty$, then $h(g, \mathcal{P}) \in (\text{Ci}(g) \cdot h(\mathcal{P}), \text{Cs}(g) \cdot h(\mathcal{P}))$.
3. If $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{\text{Sh}}$, then $h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P})$.
4. If $g \in \mathcal{G}_0^\infty$ and $h(\mathcal{P}) > 0$, then $h(g, \mathcal{P}) = \infty$.

Theorem
Let $g \in \mathcal{G}_0^\infty$ and T be an aperiodic, surjective automorphism of
a Lebesgue space (X, Σ, μ) and let $\gamma \in \mathbb{R}$. Then there exists
a partition $\mathcal{P} = \{E, X\setminus E\}$, such that

$$h(g, \mathcal{P}) \geq \gamma.$$
Corollary

Let \mathcal{P} be a finite partition and $g \in \mathcal{G}_0$. Then

1. If $C_i(g) < \infty$, then $h(g, \mathcal{P}) \geq C_i(g) \cdot h(\mathcal{P})$.
2. If $C_s(g) < \infty$, then $h(g, \mathcal{P}) \in \left(C_i(g) \cdot h(\mathcal{P}), C_s(g) \cdot h(\mathcal{P}) \right)$.
3. If $g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{\text{Sh}}$, then $h(g, \mathcal{P}) = C(g) \cdot h(\mathcal{P})$.
4. If $g \in \mathcal{G}_0^\infty$ and $h(\mathcal{P}) > 0$, then $h(g, \mathcal{P}) = \infty$.

Theorem

Let $g \in \mathcal{G}_0^\infty$ and T be an aperiodic, surjective automorphism of a Lebesgue space (X, Σ, μ) and let $\gamma \in \mathbb{R}$. Then there exists a partition $\mathcal{P} = \{E, X\setminus E\}$, such that

$$h(g, \mathcal{P}) \geq \gamma.$$
Measure-theoretic g-entropy

Following the Kolmogorov proposition we take the supremum over all partitions of dynamical g-entropy of a partition. For a given system \((X, \Sigma, \mu, T)\) we define

\[
h_\mu(g, T) = \sup_{\mathcal{P}\text{--finite}} h_\mu(g, T, \mathcal{P})
\]

and call it the measure-theoretic g-entropy of transformation \(T\) with respect to measure \(\mu\).
Measure-theoretic g-entropy

Following the Kolmogorov proposition we take the supremum over all partitions of dynamical g-entropy of a partition. For a given system \((X, \Sigma, \mu, T)\) we define

\[
h_{\mu}(g, T) = \sup_{\mathcal{P} - \text{finite}} h_{\mu}(g, T, \mathcal{P})
\]

and call it the measure-theoretic g-entropy of transformation T with respect to measure \(\mu\).
Main theorem

Theorem
Let T be an ergodic automorphism of Lebesgue space (X, Σ, μ), and $g \in G_0$ be such that $Cs(g) \in (0, \infty)$. Then

$$h_\mu(g, T) = \begin{cases}
Cs(g) \cdot h_\mu(T), & \text{if } h_\mu(T) < \infty, \\
\infty, & \text{otherwise}.
\end{cases}$$

If $g \in G_0^0$, then $h_\mu(g, T) = 0$. If $g \in G_0$ is such that $Cs(g) = \infty$ and T has positive measure-theoretic entropy, then $h_\mu(g, T) = \infty$.

Fact
Let $g \in G_0^\infty$. If (X, T) is aperiodic and surjective, then $h_\mu(g, T) = \infty$.
Main theorem

Theorem
Let T be an ergodic automorphism of Lebesgue space (X, Σ, μ), and $g \in G_0$ be such that $C_\mu(g) \in (0, \infty)$ Then

$$h_\mu(g, T) = \begin{cases} \text{Cs}(g) \cdot h_\mu(T), & \text{if } h_\mu(T) < \infty, \\ \infty, & \text{otherwise.} \end{cases}$$

If $g \in G_0^0$, then $h_\mu(g, T) = 0$. If $g \in G_0$ is such that $C_\mu(g) = \infty$ and T has positive measure-theoretic entropy, then $h_\mu(g, T) = \infty$.

Fact
Let $g \in G_0^\infty$. If (X, T) is aperiodic and surjective, then $h_\mu(g, T) = \infty$.
Rates of g-entropy convergence

F. Blume “Possible rates of entropy convergence” Ergod. Th.& Dynam. Sys. 17. 45–70 (1997)

Let \((X, T)\) be a measure-preserving system, \(T\) –bijective, \((a_n)_{n \in \mathbb{N}}\) a monotone increasing sequence with \(\lim_{n \to \infty} a_n = \infty\) and \(c \in (0, \infty)\). Let \(P\) be a class of partitions of \(X\). Let \(g \in G_0\). We say that \((X, T)\) is of type \((LS(g) \geq c)\) for \((\langle a_n \rangle, P)\) if

\[
\limsup_{n \to \infty} \frac{H(g, P_n)}{a_n} \geq c \quad \text{for all } P \in P
\]

and \((X, T)\) is of type \((LI(g) \geq c)\) for \((\langle a_n \rangle, P)\) if

\[
\liminf_{n \to \infty} \frac{H(g, P_n)}{a_n} \geq c \quad \text{for all } P \in P
\]

where

\[
H(g, P_n) = \sum_{A \in P_n} g(\mu(A)).
\]
Rates of g-entropy convergence

F. Blume “Possible rates of entropy convergence” Ergod. Th.& Dynam. Sys. 17. 45–70 (1997)

Let \((X, T)\) be a measure-preserving system, \(T\) –bijective, \((a_n)_{n \in \mathbb{N}}\) a monotone increasing sequence with \(\lim_{n \to \infty} a_n = \infty\) and \(c \in (0, \infty)\). Let \(P\) be a class of partitions of \(X\). Let \(g \in \mathcal{G}_0\).

We say that \((X, T)\) is of type \((\text{LS}(g) \geq c)\) for \(((a_n), P)\) if

\[
\limsup_{n \to \infty} \frac{H(g, P_n)}{a_n} \geq c \quad \text{for all } \mathcal{P} \in \mathcal{P}
\]

and \((X, T)\) is of type \((\text{LI}(g) \geq c)\) for \(((a_n), P)\) if

\[
\liminf_{n \to \infty} \frac{H(g, P_n)}{a_n} \geq c \quad \text{for all } \mathcal{P} \in \mathcal{P}
\]

where

\[
H(g, P_n) = \sum_{A \in P_n} g(\mu(A)).
\]
Rates of g-entropy convergence

F. Blume “Possible rates of entropy convergence” Ergod. Th. & Dynam. Sys. 17. 45–70 (1997)

Let (X, T) be a measure-preserving system, T – bijective, $(a_n)_{n \in \mathbb{N}}$ a monotone increasing sequence with $\lim_{n \to \infty} a_n = \infty$ and $c \in (0, \infty)$. Let P be a class of partitions of X. Let $g \in G_0$. We say that (X, T) is of type $(LS(g) \geq c)$ for $((a_n), P)$ if

$$\limsup_{n \to \infty} \frac{H(g, \mathcal{P}_n)}{a_n} \geq c \text{ for all } \mathcal{P} \in P$$

and (X, T) is of type $(LI(g) \geq c)$ for $((a_n), P)$ if

$$\liminf_{n \to \infty} \frac{H(g, \mathcal{P}_n)}{a_n} \geq c \text{ for all } \mathcal{P} \in P$$

where

$$H(g, \mathcal{P}_n) = \sum_{A \in \mathcal{P}_n} g(\mu(A)).$$
for $g = \eta$ we obtain types of convergence introduced by Blume

this invariant was used for aperiodic, completely ergodic and rank-one systems (Blume 1997, 1998, 2000, 2011)

types $LS(\eta)$, $LI(\eta)$ were also used to distinguish some weakly mixing rank-one systems (Blume 1995)
for $g = \eta$ we obtain types of convergence introduced by Blume

this invariant was used for aperiodic, completely ergodic and rank-one systems (Blume 1997, 1998, 2000, 2011)

types $\text{LS}(\eta)$, $\text{LI}(\eta)$ were also used to distinguish some weakly mixing rank-one systems (Blume 1995)
Choice of \(P \) and \((a_n) \)

▶ class of partitions

\[
P(X) := \{ \mathcal{P} \mid \mathcal{P} = \{ E, X \setminus E \} \text{ for some } E \in \Sigma \text{ with } 0 < \mu(E) < 1 \}.
\]

If \((X, T)\) and \((Y, S)\) are isomorphic measure-preserving systems, then \((X, T)\) is of type \((\text{LS}(g) \geq c)\) for \(((a_n), P(X))\) iff \((Y, S)\) is of type \((\text{LS}(g) \geq c)\) for \(((a_n), P(Y))\).

▶ choice of \((a_n) \)

if \((X, T)\) has zero entropy and \(g \in \mathcal{G}_0^0 \cup \mathcal{G}_0^{\text{Sh}} \), we have

\[
\lim_{n \to \infty} \frac{H(g, P_n)}{n} = 0
\]

for all finite partitions \(P \) of \(X \). Therefore we consider \((a_n) \) such that \(\lim_{n \to \infty} \frac{a_n}{n} = 0 \).
Choice of P and (a_n)

- class of partitions

$$P(X) := \{ P | P = \{ E, X \setminus E \} \text{ for some } E \in \Sigma \text{ with } 0 < \mu(E) < 1 \}.$$

If (X, T) and (Y, S) are isomorphic measure-preserving systems, then (X, T) is of type $(LS(g) \geq c)$ for $((a_n), P(X))$ iff (Y, S) is of type $(LS(g) \geq c)$ for $((a_n), P(Y))$.

- choice of (a_n)

if (X, T) has zero entropy and $g \in G_0^0 \cup G_0^{Sh}$, we have

$$\lim_{n \to \infty} \frac{H(g, P_n)}{n} = 0$$

for all finite partitions P of X. Therefore we consider (a_n) such that $\lim_{n \to \infty} \frac{a_n}{n} = 0$.
Choice of P and (a_n)

- class of partitions

$$P(X) := \{P \mid P = \{E, X \setminus E\} \text{ for some } E \in \Sigma \text{ with } 0 < \mu(E) < 1\}.$$

If (X, T) and (Y, S) are isomorphic measure-preserving systems, then (X, T) is of type $(\text{LS}(g) \geq c)$ for $((a_n), P(X))$ iff (Y, S) is of type $(\text{LS}(g) \geq c)$ for $((a_n), P(Y))$.

- choice of (a_n)

if (X, T) has zero entropy and $g \in G_0^0 \cup G_0^{Sh}$, we have

$$\lim_{n \to \infty} \frac{H(g, P_n)}{n} = 0$$

for all finite partitions P of X. Therefore we consider (a_n) such that $\lim_{n \to \infty} \frac{a_n}{n} = 0$.
Theorem
Let $g \in \mathcal{G}_0$ with $C(g) > 0$. If (X, T) is an aperiodic measure-preserving system and (a_n) is a positive monotone increasing sequence with $\lim_{n \to \infty} \frac{a_n}{n} = 0$, then (X, T) is not of type $(\text{LI}(g) < \infty)$ for $((a_n), P(X))$.
Can we get something new?

Table: Connections between η-entropy types and g-entropy types of convergence

<table>
<thead>
<tr>
<th>η-entropy</th>
<th>$g \in G^0_0$</th>
<th>$g \in G^{\text{Sh}}_0$</th>
<th>$g \in G^\infty_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{LS}(\eta) \leq c$</td>
<td>$\text{LS}(g) = 0$</td>
<td>$\text{LS}(g) \leq C(g) \cdot c$</td>
<td>$\text{LS}(g) \leq \infty$, $\text{LS}(g) = \infty$</td>
</tr>
<tr>
<td>$\text{LS}(\eta) \geq c$</td>
<td>$\text{LS}(g) = 0$, $\text{LS}(g) \geq 0$</td>
<td>$\text{LS}(g) \geq C(g) \cdot c$</td>
<td>$\text{LS}(g) = \infty$</td>
</tr>
<tr>
<td>$\text{LS}(\eta) < \infty$</td>
<td>$\text{LS}(g) = 0$</td>
<td>$\text{LS}(g) < \infty$</td>
<td>$\text{LS}(g) \leq \infty$, $\text{LS}(g) = \infty$</td>
</tr>
<tr>
<td>$\text{LS}(\eta) = \infty$</td>
<td>$\text{LS}(g) < \infty$, $\text{LS}(g) \leq \infty$, $\text{LS}(g) = \infty$</td>
<td>$\text{LS}(g) = \infty$</td>
<td>$\text{LS}(g) = \infty$</td>
</tr>
</tbody>
</table>
\(g_0 \in G_0^0 \) – aperiodic systems

- Every subshift over two symbols is of type \((\text{LS}(g) \leq 1)\) for \(((\varphi(2^{-n}))_{n=1}^{\infty}, P(X))\).
- Let \(g_0(x) = x \log_2(1 - \log_2 x) \).

Theorem

If \((X, T)\) is aperiodic and measure-preserving and \(\phi : [1, \infty) \mapsto (0, \infty) \) is an increasing function with \(\int_1^{\infty} \frac{\phi(x)}{x^2} \, dx < \infty \), then for every \(P \) such that \(\lim_{n \to \infty} \max\{\mu(A) | A \in P_n\} = 0 \), we have

\[
\limsup_{n \to \infty} \frac{H(g_0, P_n)}{\phi(ng_0(1/n))} = \infty.
\]

If \(\int_1^{\infty} \frac{\phi(x)}{x^2} \, dx = \infty \), then there exists a weakly mixing system \((X, T)\) and a meas. set \(E \) such that \(0 < \mu(E) < 1 \) and \(\lim_{n \to \infty} \frac{H(g_0, P_n)}{\phi(ng_0(1/n))} = 0 \).
\(g_0 \in G_0^0 \) – aperiodic systems

- Every subshift over two symbols is of type \((\text{LS}(g) \leq 1)\) for \(((\varphi(2^{-n}))_{n=1}^{\infty}, P(X))\).
- Let \(g_0(x) = x \log_2(1 - \log_2 x) \).

Theorem

If \((X, T)\) is aperiodic and measure-preserving and \(\phi: [1, \infty) \mapsto (0, \infty)\) is an increasing function with \(\int_1^{\infty} \frac{\phi(x)}{x^2} dx < \infty\), then for every \(P \) such that \(\lim \max_{n \to \infty} \{\mu(A) | A \in P_n\} = 0 \), we have

\[
\limsup_{n \to \infty} \frac{H(g_0, P_n)}{\phi(n g_0(1/n))} = \infty.
\]

If \(\int_1^{\infty} \frac{\phi(x)}{x^2} dx = \infty\), then there exists a weakly mixing system \((X, T)\) and a meas. set \(E\) such that \(0 < \mu(E) < 1\) and

\[
\lim_{n \to \infty} \frac{H(g_0, P_n)}{\phi(n g_0(1/n))} = 0.
\]
$g_0 \in \mathcal{G}^0_0$ - aperiodic systems

- Every subshift over two symbols is of type $\text{LS}(g) \leq 1$ for $((\varphi(2^{-n}))_{n=1}^\infty, P(X))$.
- Let $g_0(x) = x \log_2(1 - \log_2 x)$.

Theorem

If (X, T) is aperiodic and measure-preserving and $\phi: [1, \infty) \mapsto (0, \infty)$ is an increasing function with $\int_1^\infty \frac{\phi(x)}{x^2} \, dx < \infty$, then for every \mathcal{P} such that $\lim_{n \to \infty} \max_{A \in \mathcal{P}_n} \mu(A) = 0$, we have

$$\limsup_{n \to \infty} \frac{H(g_0, \mathcal{P}_n)}{\phi(ng_0(1/n))} = \infty.$$

If $\int_1^\infty \frac{\phi(x)}{x^2} \, dx = \infty$, then there exists a weakly mixing system (X, T) and a meas. set E such that $0 < \mu(E) < 1$ and

$$\lim_{n \to \infty} \frac{H(g_0, \mathcal{P}_n)}{\phi(ng_0(1/n))} = 0.$$
\[g_0 \in \mathcal{G}_0^0 \] – completely ergodic systems

- If \([0, 1], T) is completely ergodic, then there exists such a sequence \((a_n)\) with \(\lim_{n \to \infty} \frac{a_n}{n} = 0, \lim_{n \to \infty} a_n = \infty\), that for every \(\mathcal{P} \in \mathcal{P}([0, 1])\) we have
 \[
 \liminf_{n \to \infty} \frac{H(g_0, \mathcal{P}_n)}{a_n} \geq 1.
 \]

- Under the assumption of the previous theorem there exists \((a_n)\) such that \((X, T)\) is of type \(LS(\eta) = \infty\) for \(((a_n), \mathcal{P}([0, 1]))\).

- for every \(\mathcal{P} \in \mathcal{P}([0, 1])\)
 \[
 \lim_{n \to \infty} H(\eta, \mathcal{P}_n) = \infty.
 \]
\(g_0 \in \mathcal{G}_0^0 \) – completely ergodic systems

- If \(([0, 1], T)\) is completely ergodic, then there exists such a sequence \((a_n)\) with \(\lim_{n \to \infty} \frac{a_n}{n} = 0, \lim_{n \to \infty} a_n = \infty \), that for every \(P \in P([0, 1]) \) we have

\[
\liminf_{n \to \infty} \frac{H(g_0, P_n)}{a_n} \geq 1.
\]

- Under the assumption of the previous theorem there exists \((a_n)\) such that \((X, T)\) is of type \(\text{LS}(\eta) = \infty \) for \(((a_n), P([0, 1]))\).

- for every \(P \in P([0, 1]) \)

\[
\lim_{n \to \infty} H(\eta, P_n) = \infty.
\]
$g_0 \in \mathcal{G}_0^0$ – completely ergodic systems

- If $([0, 1], T)$ is completely ergodic, then there exists such a sequence (a_n) with $\lim_{n \to \infty} \frac{a_n}{n} = 0$, $\lim_{n \to \infty} a_n = \infty$, that for every $\mathcal{P} \in \mathcal{P}([0, 1])$ we have

$$\liminf_{n \to \infty} \frac{H(g_0, \mathcal{P}_n)}{a_n} \geq 1.$$

- Under the assumption of the previous theorem there exists (a_n) such that (X, T) is of type $LS(\eta) = \infty$ for $((a_n), \mathcal{P}([0, 1]))$.
- for every $\mathcal{P} \in \mathcal{P}([0, 1])$

$$\lim_{n \to \infty} H(\eta, \mathcal{P}_n) = \infty.$$
We may construct a class of rank-one weakly mixing systems where we can use type \((\text{LI}(g) \geq c)\) for \(((a_n), P(X))\) to distinguish systems. Depending on the choice of \(g\) we may use other than \(\eta\)-entropy types of convergence to differ rank-one systems.
Additional assumptions on g

$g'(0) = \infty \ (g \in G_0^0)$

Subderivativity of g

The crucial property of the static g-entropy is the following:

$$H(g, \mathcal{P} \vee \mathcal{Q}) \leq H(g, \mathcal{P}) + H(g, \mathcal{Q}|\mathcal{P})$$

It is sufficient that for every $x, y \in [0, 1]$ function g fulfills the following condition

$$g(xy) \leq xg(y) + yg(x), \quad (5)$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-\ln x),$$

where $h : (0, \infty) \mapsto \mathbb{R}$ is a concave, subadditive and increasing with $\lim_{x \to \infty} h(x) = \infty, \lim_{x \to \infty} \frac{h(x)}{x} = 0$.
Additional assumptions on g

\[g'(0) = \infty \ (g \in \mathcal{G}_0^0) \]

Subderivativity of g

The crucial property of the static g-entropy is the following:

\[H(g, \mathcal{P} \lor \mathcal{Q}) \leq H(g, \mathcal{P}) + H(g, \mathcal{Q}|\mathcal{P}) \]

It is sufficient that for every \(x, y \in [0, 1] \) function \(g \) fulfills the following condition

\[g(xy) \leq xg(y) + yg(x), \] \hspace{1cm} (5)

The condition is not easy to check. On the other hand if we want to construct such a function we can define

\[g(x) := xh(-\ln x), \]

where \(h : (0, \infty) \rightarrow \mathbb{R} \) is a concave, subadditive and increasing with \(\lim_{x \to \infty} h(x) = \infty, \lim_{x \to \infty} \frac{h(x)}{x} = 0. \)
Additional assumptions on g

$g'(0) = \infty \ (g \in G_0)$

Subderivativity of g

The crucial property of the static g-entropy is the following:

$$H(g, P \lor Q) \leq H(g, P) + H(g, Q|P)$$

It is sufficient that for every $x, y \in [0, 1]$ function g fulfills the following condition

$$g(xy) \leq xg(y) + yg(x), \quad (5)$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-\ln x),$$

where $h : (0, \infty) \mapsto \mathbb{R}$ is a concave, subadditive and increasing with

$$\lim_{x \to \infty} h(x) = \infty, \quad \lim_{x \to \infty} \frac{h(x)}{x} = 0.$$
Additional assumptions on g

$$g'(0) = \infty \ (g \in \mathcal{G}_0)$$

Subderivativity of g

The crucial property of the static g-entropy is the following:

$$H(g, \mathcal{P} \vee \mathcal{Q}) \leq H(g, \mathcal{P}) + H(g, \mathcal{Q}|\mathcal{P})$$

It is sufficient that for every $x, y \in [0, 1]$ function g fulfills the following condition

$$g(xy) \leq xg(y) + yg(x), \quad (5)$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-\ln x),$$

where $h : (0, \infty) \rightarrow \mathbb{R}$ is a concave, subadditive and increasing with $\lim_{x \to \infty} h(x) = \infty$, $\lim_{x \to \infty} \frac{h(x)}{x} = 0$.
Additional assumptions on g

$g'(0) = \infty \ (g \in \mathcal{G}_0^0)$

Subderivativity of g

The crucial property of the static g-entropy is the following:

$$H(g, \mathcal{P} \lor \mathcal{Q}) \leq H(g, \mathcal{P}) + H(g, \mathcal{Q}|\mathcal{P})$$

It is sufficient that for every $x, y \in [0, 1]$ function g fulfills the following condition

$$g(xy) \leq xg(y) + yg(x), \quad (5)$$

The condition is not easy to check. On the other hand if we want to construct such a function we can define

$$g(x) := xh(-\ln x),$$

where $h : (0, \infty) \mapsto \mathbb{R}$ is a concave, subadditive and increasing with $\lim_{x \to \infty} h(x) = \infty$, $\lim_{x \to \infty} \frac{h(x)}{x} = 0$.

Examples of subderivative functions

- for $h(x) = \ln(1 + x)$, we get $g(x) = x \ln(1 - \ln x)$,
- for $h(x) = x^\alpha$, $\alpha \in (0, 1)$ we have $g(x) = x(- \ln x)^\alpha$,
- if $h(x) := \begin{cases} x, & \text{for } x \in [0, 1) \\ 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), \ k = 0, 1, \ldots \end{cases}$
then
$$g(x) = \begin{cases} 0, & \text{for } x = 0, \\ -2^{-k}x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right), \ k \\ -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right). \end{cases}$$
Examples of subderivative functions

- for \(h(x) = \ln(1 + x) \), we get \(g(x) = x \ln(1 - \ln x) \),
- for \(h(x) = x^\alpha, \alpha \in (0, 1) \) we have \(g(x) = x(-\ln x)^\alpha \),
- if

\[
\begin{align*}
 h(x) &:= \begin{cases}
 x, & \text{for } x \in [0, 1) \\
 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), \ k = 0, 1, \ldots
 \end{cases} \\
 g(x) &:= \begin{cases}
 0, & \text{for } x = 0, \\
 -2^{-k}x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right), \ k \\
 -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right].
 \end{cases}
\end{align*}
\]
Examples of subderivative functions

▶ for $h(x) = \ln(1 + x)$, we get $g(x) = x \ln(1 - \ln x)$,
▶ for $h(x) = x^\alpha$, $\alpha \in (0, 1)$ we have $g(x) = x(- \ln x)^\alpha$,
▶ if

$$h(x) := \begin{cases}
 x, & \text{for } x \in [0, 1) \\
 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), \ k = 0, 1, \ldots
\end{cases}$$

then

$$g(x) = \begin{cases}
 0, & \text{for } x = 0, \\
 -2^{-k}x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right), \ k \\
 -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right].
\end{cases}$$
Examples of subderivative functions

- for \(h(x) = \ln(1 + x) \), we get \(g(x) = x \ln(1 - \ln x) \),
- for \(h(x) = x^\alpha , \alpha \in (0, 1) \) we have \(g(x) = x(-\ln x)^\alpha \),
- if

\[
h(x) := \begin{cases}
 x, & \text{for } x \in [0, 1) \\
 2^{-k}x + 2^{k+1} - 2, & \text{for } x \in [4^k, 4^{k+1}), \ k = 0, 1, \ldots
\end{cases}
\]

then

\[
g(x) = \begin{cases}
 0, & \text{for } x = 0, \\
 -2^{-k}x \log_2 x + x(2^{k+1} - 2), & \text{for } x \in \left(2^{-4^{k+1}}, 2^{-4^k}\right), \ k \\
 -x \log_2 x, & \text{for } x \in \left(\frac{1}{2}, 1\right].
\end{cases}
\]